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Ensemble coding supports rapid extraction of visual
statistics about distributed visual information.
Researchers typically study this ability with the goal of
drawing conclusions about how such coding extracts
information from natural scenes. Here we argue that a
second domain can serve as another strong inspiration
for understanding ensemble coding: graphs, maps, and
other visual presentations of data. Data visualizations
allow observers to leverage their ability to perform
visual ensemble statistics on distributions of spatial or
featural visual information to estimate actual statistics
on data. We survey the types of visual statistical tasks
that occur within data visualizations across everyday
examples, such as scatterplots, and more specialized
images, such as weather maps or depictions of patterns
in text. We divide these tasks into four categories:
identification of sets of values, summarization across
those values, segmentation of collections, and
estimation of structure. We point to unanswered
questions for each category and give examples of such
cross-pollination in the current literature. Increased
collaboration between the data visualization and
perceptual psychology research communities can inspire
new solutions to challenges in visualization while
simultaneously exposing unsolved problems in
perception research.

Introduction

Some types of visual information must be extracted
from small numbers of objects at a time, such as
complex object identity (Wolfe, 1998) or spatial
relationships (Franconeri, Scimeca, Roth, Helseth, &

Kahn, 2012). Other types of information can be
extracted and combined in parallel from large numbers
of objects at once, such as the average object size
(Ariely, 2001). A growing body of work seeks to
understand such ensemble coding of spatially distrib-
uted visual information (for surveys, see Alvarez, 2011;
Whitney, Haberman, & Sweeny, 2014). Researchers
typically study this ability in order to draw conclusions
about how ensemble coding helps extract information
from natural scenes. For example, one might want to
estimate the number of books on a shelf (Ross & Burr,
2010) or gauge the average emotional expression within
a crowd of people (Haberman & Whitney, 2007).

Here we argue for another domain that should serve
as an equally exciting inspiration for understanding
ensemble coding: visual presentations of data (e.g.,
maps, charts, and graphs). Data visualizations are
ubiquitous to students, scientists, and any broader
audience that reads graphs, uses maps, or reads a
newspaper. Visualizations communicate patterns in
data by mapping data dimensions to visual features (for
an overview, see Bertin, 1983; Heer, Bostock, &
Ogievetsky, 2010). To illustrate, consider a scatterplot,
which maps data values to spatial positions. For some
types of inspection, such as mapping symbols to a
legend or knowing whether a particular data value is
lower or higher than another, we must serially inspect
small numbers of data values at a time. But other types
of information can be extracted in parallel, such as the
approximate mean position, or size, of an entire cloud
of points (Figure 1a) or the portion of a line graph with
the highest variability (Figure 1b).

These judgments are ensemble judgments, and they
merit more intense study both for their value as a case
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study in understanding how ensemble coding works in
the visual system and for their practical importance
within information visualization. Information visuali-
zation research and practice has been previously
inspired by research in cognition and perception (for
surveys, see Healey & Enns, 2012; Ware, 2008, 2013;
for a framework for reasoning about perceptions of
visualization designs, see Rensink, 2014). However,
existing work focuses on how perception might inform
visualization design. We instead aim to inspire a
broader two-way conversation between vision science
and visualization—understanding how viewers estimate
properties of visualized data offers potential research
directions for vision science, and this understanding
can in turn inform more effective visualization designs.

Experiments in visualization have tried to quantify
how effectively viewers perceive different properties
encoded using various visual features. However, much
of this work focuses on single-value tasks, such as
finding and estimating values from individual data
points (for examples, see Cleveland & McGill, 1984;
Heer, Kong, & Agrawala, 2009; Javed, McDonnel, &
Elmqvist, 2010). More recent work has begun to study
ensemble coding in data visualization, such as the
construction of averages within a scatterplot (Gleicher,
Correll, Nothelfer, & Franconeri, 2013); variance,
range, and outliers in line graphs and heat maps
(Albers, Correll, & Gleicher, 2014); estimation and
comparison of correlation (Harrison, Yang, Franco-
neri, & Chang, 2014; Rensink & Baldridge, 2010); and
numerosity judgments in unit charts (Haroz, Kosara, &
Franconeri, 2015). Our goal is to identify a broader set
of such visualization tasks that benefit from ensemble
coding and to increase research and discussion sur-
rounding how these judgments work and how visual
data displays can be better designed to support them.

In principle, the statistics that viewers perceive in a
data visualization could be formally computed and
shown directly to the viewer. However, visual extrac-
tion of statistics is often more attractive because
formally computed statistics, which necessarily abstract
over potentially critical patterns, are often insufficient
to describe data. Try to imagine a scatterplot of a data
set that exhibits the following statistics: the x and y
variables both have a mean of 7.5 and variance of 5,
and the correlation coefficient of x and y is 0.816. You
are probably imagining that the underlying data look
like the first plot in Figure 2. But any of the four data
sets shown in Figure 2 would produce these statistics—
all four have identical means across both x and y,
variabilities across both x and y, correlation coeffi-
cients, and linear regression formulas (y¼ 3 þ 0.5x;
Anscombe, 1973). Yet each plot exhibits qualitatively
different patterns. While there are increasingly complex
statistics that could differentiate among these patterns,
these statistics would not likely be run without the
benefit of visual inspection to determine their necessity.
Alternatively, attempting to provide statistical infor-
mation explicitly, even through visual means, can
quickly become cluttered and overwhelm the viewer,
even for a small number of statistics (Figure 3). Visual
estimation also provides a beneficial flexibility in terms
of what data are being processed: Viewers have direct
control over the different subsets of the data they
choose to compute statistics for.

If allowing observers to extract statistics and
patterns about data with their visual system offers an
alternative to explicitly providing raw statistics, then
understanding the effectiveness of this process is
critical. The benefits of efficiently estimating visual
statistics provide both an application of and challenges
for research on the perception of these features. How

Figure 1. Even without explicitly shown statistics, a viewer can quickly and robustly observe that, on average, the orange dots have a

higher y value than the purple dots, or that there is more variance in May (highlighted in red) than February (highlighted in green).
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do the capabilities of the visual system match the needs
of visual depictions of data? Conversely, the difficulties
encountered in data visualization can challenge our
understanding of perception. When perceptual psy-
chologists cannot answer the questions asked by
visualization designers, it shows the psychologists the
gaps in their theory—what they did not realize that
they did not know.

We organize our exploration of this synergy between
perception research and visualization around two key
questions: What visual statistics can our perceptual
system extract via ensemble coding, and what potential
needs in visualization can these ensembles address? We
can align visual statistics with visualization needs by
understanding the different kinds of tasks viewers
might want to accomplish. In visualization, tasks are,
informally, the visual operations that people may want
to perform with data, such as identifying points with
high values or estimating the average of a set of values.
A flurry of recent efforts in the data visualization
community propose taxonomies and typologies of tasks
(Amar, Eagan, & Stasko, 2005; Roth, 2012; Schulz,
Nocke, Heitzler, & Schumann, 2013; Shneiderman,
1996), creating abstractions that seek to help knowl-
edge gained in one environment transfer to visualiza-
tions with differing contexts and details (for an
extensive survey and comparison of prior efforts, see
Brehmer & Munzner, 2013). However, these taxono-
mies generally attempt to classify techniques used by
designers rather than understand how properties of the
data might be perceived in different designs.

In order to address the questions around ensemble
coding that bridge perception and visualization, we
need a categorization of visual tasks at the perceptual
level: basic visual operations that serve as building
blocks for more complex analyses. In this article, we
introduce an organization of low-level tasks that
require, or may require, ensemble coding into a
framework of four categories: identification, summari-
zation, segmentation, and structure estimation. Figure
4 depicts these categories, as well as examples of each,

for four common ways of visually depicting data values
(position, size, orientation, and color). Figure 5
demonstrates examples of these tasks applied to more
complex visualization systems. Understanding which
combinations of visual feature and task are most
effective is a critical challenge. What statistics and
patterns can we accurately extract, which are inaccu-
rate, and which are systematically biased? How does
the choice of feature used to represent the data affect
our ability to extract absolute values, statistics, and
patterns from data sets?

Both the perception and visualization research
communities should explore and refine—or even
completely reinvent—the grid of tasks and features in
Figure 4. For perception research, it holds a diverse set
of unsolved problems, not only for understanding
ensemble coding across different features and statistics
but also for revealing unsolved questions surrounding
visual search, multifocal attention, and visual compar-
ison (for a review of these topics, see Franconeri, 2013).

Figure 2. Common statistical abstractions may not capture potentially critical patterns in data. This example, from Anscombe (1973),

shows four data sets that are identical across several common statistics (mean, variance, correlation, and linear regression) yet

contain qualitatively different patterns. Visual inspection offers powerful and flexible processing of these differences, as well as rough

approximations of statistics.

Figure 3. Providing explicit statistics (in this case, minimum,

maximum, mean, variance, and outliers per month) can be

overwhelming, even in a visual format.
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For visualization research, it has the potential to
produce concrete guidelines for optimizing the map-
ping of visual features to data dimensions to support
different tasks. In the following sections, we explore
this grid, moving serially among its columns, providing
samples of relevant research on the perceptual issues
related to each task, the visualization applications that
build on the task, and potential directions for future
research. While by no means exhaustive, the sampling
offers several potential research directions for percep-
tual psychologists that could also inspire more effective
visualization design.

We preface our argument with some caveats. We do
not intend this categorization to be a final answer, but
instead the spark of a broader conversation. For
example, we categorize outlier detection as an identi-
fication task, but one might also argue that it is a form
of segmentation. Our discussion of work related to
each task, from both perceptual psychology and data
visualization, will not be exhaustive—instead, our goal
is to provide a sampling of relevant work from each
community. Appendix A provides a table of additional

visualization references for the discussed tasks. Because
of the need for brevity, some of the links that we draw
may strike members of either community as problem-
atic. For example, we mention findings in data
visualization that appear inconsistent with work in
perceptual psychology (see the discussion on mean
position in scatterplots under Mean and variance
estimation). A psychologist reading those sections
might generate display constraints and confounding
factors that could explain why the effect did not
generalize, and might reflexively produce more precise
guidelines that visualization designers could use to
better predict when these effects will hold. We would be
delighted by this response, as it highlights the
importance of increased collaboration between visual-
ization designers and perceptual psychologists. Finally,
our review will focus on ensemble coding, but given the
blurriness of its definition and the need for it to interact
with other types of visual processing, we will include
other related topics that are outside its strict definition,
such as visual search, multifocal attention, feature-
based attention, and shape recognition.

Figure 4. We identify four categories of visualization tasks (top) that require ensemble coding of information spread throughout the

visual field. The tasks can be performed on multiple visual features, but not necessarily with equal speed or efficiency. In

visualizations, choosing which visual feature is mapped to each dimension of the data set affects which tasks are most easily

performed on which data dimensions (e.g., perhaps it is best to map size to the data dimension that will likely require a summary

judgement, and position to the data dimension that will likely be segmented).
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Figure 5. In these example visualization applications, data are mapped to multiple visual features, such as (a, d) color and position, (b)

color and orientation, and (c) position and size, to support a variety of analysis tasks. Understanding how efficiently these features

communicate different kinds of information can inspire effective visualization designs.
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Identification tasks

An identification task requires a viewer to isolate a
specified subset of data points (Figure 6). Often,
viewers know which values they seek, in which case the
task requires identifying points that match given values.
In other cases, they may need to extract distributional
information about a data set to identify values that are
important relative to the distribution, such as locating
the minima, maxima, or median. In a third kind of
identification task, the viewer must actively search
through the data set to detect outliers—values that are
notably different from the rest of the data set.

Absolute-value identification

In absolute-value identification tasks, viewers isolate
points that match a specified data value, such as the red
points (e.g., Figure 6a), a circle of a given size, or all
points in a certain spatial region of the display.

The constraints on a viewer’s ability to locate a single
target with a known feature—red, circular, or 2 units in
diameter—have been long studied (Wolfe, 1998). As an
example of one effect, finding a single target is more
difficult when that target is perceptually more similar to
the distractors around it, and when there is more
diversity amongst the distractors (Duncan & Hum-
phreys, 1989). This result is consistent with an
established guideline for designing visualizations:
Maximize the perceptual distance among the features
that delineate data properties relevant to the identifi-
cation task, but minimize differences between features
that map properties irrelevant to the task (Wickens &
Carswell, 1995).

There are also rich links between the visualization
task of localizing the set of targets matching a known
feature—all of the red, circular, or 28 objects—and
feature-based attention, which allows a viewer to
select multiple objects with a visual ‘‘feature filter’’
(e.g., Saenz, Buraĉas, & Boynton, 2003). This feature
filter is known to extend broadly across a visual
display, allowing the selection of large numbers of
objects (or data points) at the same time (Levinthal &
Franconeri, 2011), and rules have been proposed
governing how multiple features can, and cannot, be
logically combined (e.g., red AND square; Huang &
Pashler, 2007; Nakayama, Silverman, et al., 1986).
Understanding how these filters operate across
multiple features could inform visualizations that
support identification tasks acting across different
dimensions of a data set simultaneously. For example,
in Figure 5b, understanding how well viewers can
combine color and orientation can help determine
how effectively viewers can identify, for example,
high-temperature regions where the wind blows
toward the west.

When a set of points cannot be easily selected by
visual features, it must instead be selected by the points’
locations. Perhaps a viewer needs to select Points 4, 16,
and 18 within a scatterplot because the text of their
labels makes them currently relevant. Here, research on
attentional selection of multiple objects (Scimeca &
Franconeri, 2015) explains the ability to perform this
task in visualization. As an example, there are limits to
the number of locations that can be selected (up to
seven or eight in total), but this limit is closer to three
or four in typical displays, where objects become more
tightly packed (Scimeca & Franconeri, 2014). A recent
collaboration between perception and visualization
researchers has shown that these selection constraints

Figure 6. Identification tasks require a viewer to locate a specific set of data points, such as (a) the class of points in a scatterplot that

are labeled as red or blue or (b) the minimum and maximum values that constitute the value range in a bar graph.
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generalize to conditions similar to following points in a
scatterplot through an animated transition from one
plot to another (Chevalier, Dragicevic, & Franconeri,
2014).

Relative-value identification

While some absolute-value identification tasks may
not require ensemble coding, relative-value identifica-
tion tasks rely on distributional information about a
data set in order to identify data points with a
prespecified position within that distribution. Because
extraction of the distribution is needed to find relative
values, even traditional visual search tasks for relative
values would seem to require an initial ensemble coding
pass of a display before defining the target to search
for. Examples of relative-value tasks include extracting
the minimum or maximum value for the entire set of
data (e.g., the lowest data value) or within a subset of
the data (e.g., the lowest red). In Figure 5b, for
example, an analyst might search for the range of wind
directions in California. In Figure 5c, which two
countries have the largest populations and which have
the smallest? In a bar graph, the range of the data
distribution might be revealed by simultaneous visual
selection of both the minimum and maximum values
(Figure 6b). The strategy for locating minima and
maxima is unclear, though it may require ensemble
coding, as both minima and maxima are defined with
respect to all of the points in a collection.

There are other relative-value identification tasks
that beg for study by perceptual psychologists. In
Figure 6b, how well can you estimate the median value
in the bar graph, and what perceptual process allows
that judgment? One heuristic could be to find the range,
determine the imaginary horizontal line that hovers in
the midpoint of that range, and search for bars with
tops near that area. That strategy works for nonskewed
distributions, but fails when the data are skewed. What
perceptual strategies would be more robust, what
downsides would they have, and how could they be
taught to graph readers? What graph designs would
permit other strategies for finding the median—for
example, how could your abilities change for data
plotted as color values instead of the positional and
length values in Figure 6b? What happens when you
ask all of these questions for the modal (most frequent)
value instead of the median?

Outlier identification

Outlier detection tasks are defined by the need to
identify targets that are different than others in the
collection. They are similar to relative-value identifi-

cation tasks, except that the position of the target data
points within the distribution is not specified a priori—
viewers discover them while foraging through a data
set, allowing saliently different data points to ‘‘pop
out’’ (Neisser, 1964; Prinzmetal & Taylor, 2006). This
set of tasks reflects one of the strongest advantages of
using the visual system to compute statistics in
visualization: cases where critical statistics are difficult
to know (and therefore cannot be mathematically
computed) a priori. As a result, outlier identification
provides a number of opportunities for research in both
perception and visualization.

When position is used to represent data, it is unclear
what perceptual strategies allow viewers to determine
when a point in a scatterplot or a bar in a bar graph
might be seen as an outlier. Studies of perceptual
segmentation, as discussed in Segmentation tasks, may
offer insight into how a positional outlier may be
identified and the role ensembles might play in
detecting these values. When data are instead plotted in
a featural space, such as when values are encoded with
color in a heatmap, outliers might be modeled by their
perceptual salience (Itti, 2005; Itti & Koch, 2001). But
what process might allow a viewer to detect outliers
that are not prototypical extrema, such as outliers in
the middle of a widely spaced bimodal color distribu-
tion? Identifying such outliers may rely more strongly
on the power of ensemble coding to extract information
about the overall distribution of values.

Goals, context, tasks demands, and experience
account for much of the variability in salience for
natural scenes, but whether this is still true in relatively
simpler data displays remains to be tested. Work on
attentional control (Serences et al., 2005) and priming
of features by recent experience (Chetverikov &
Kristjansson, 2014) may contain important insights for
visualization designers, and the context of data-
visualization tasks could inspire perceptual psycholo-
gists with new questions.

All three of the tasks described in the foregoing can be
performed either within an entire data set or within a
specific subset of the data. This subset can be spatially
defined: What is the minimum value in the left half of
Figure 6b? What is the pop-out color in the first
paragraph of the example shown in Figure 5a, or the
upper left corner of Figure 5d? The subset can also be
featurally defined: Among the red circles in Figure 5c,
are there any positional outliers at the bottom of the
display? In displays that simulate data visualizations, the
spatially local level surprisingly does not appear to play
a stronger role in computing the salience of a potential
outlier. Detecting the presence of an outlier depends on
an item’s global uniqueness rather than local uniqueness
(Haroz & Whitney, 2012), implying the use of scene-
wide variance rather than only local contrast.
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Summary tasks

Summary tasks require the viewer to extract
properties that describe the collection in aggregate. In
contrast to identification tasks, which extract subsets of
objects, summary tasks create representative values,
such as descriptive statistical measures. For example, a
viewer may estimate the average height of a bar in a bar
chart or the average position of points in a scatterplot
(Figure 7b). While some summaries might overlap with
value extraction, as in extracting a median, most
summaries are not values from the set.

Mean and variance estimation

Estimating mean and variance are common sum-
mary tasks in visualization. Figure 8a depicts monthly
stock prices as individual line graphs, with data from
one company colored red and data from the other
colored blue. An analyst could estimate the mean
orientation of the red and blue lines to compare how
monthly stock prices change on average between the
two companies, and the orientation variance to
compare the stability of stock values. Means can be

efficiently computed for several visual features, in-
cluding size (Ariely, 2001; Chong & Treisman, 2003,
2005a, 2005b; Fouriezos, Rubenfeld, & Capstick,
2008), orientation (Alvarez & Oliva, 2008; Bulakowski,
Bressler, & Whitney, 2007; Choo, Levinthal, &
Franconeri, 2012; Parkes, Lund, Angelucci, Solomon,
& Morgan, 2001), motion speed (Watamaniuk &
Duchon, 1992) and direction (Watamaniuk, Sekuler, &
Williams, 1989), brightness (Bauer, 2010), color (Web-
ster, Kay, & Webster, 2014), and position (Hess &
Holliday, 1992; Melcher & Kowler, 1999; Morgan &
Glennerster, 1991; Whitaker, McGraw, Pacey, &
Barrett, 1996). Variance among values can be efficiently
computed for orientation (Morgan, Chubb, & Solo-
mon, 2008). Our ability to compute the mean of a
collection is surprisingly robust in the face of other
types of variability across collections, for irrelevant
dimensions like spatial frequency (Oliva & Torralba,
2006), density (Chong & Treisman, 2005b; Dakin,
2001), numerosity (Chong & Treisman, 2005b; Dakin,
2001), temporal sequence (Chong & Treisman, 2005a),
and distributional variance (Dakin, 2001).

Figure 7a provides a sample visualization from
which mean size and position can be rapidly extracted
(see the red circle in Figure 7b). Figure 5c depicts a
more complex visualization, in which mean size

Figure 7. Summary tasks require viewers to estimate a value that summarizes a collection, such as its (b) mean and (c) numerosity.

Figure 8. Estimating mean, skew, and numerosity are three types of summary tasks common to data visualization.
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provides insight into demographic data. To compare
average population size across different geographic
regions, for example, you could identify circles of
different colors and average the size of the resulting set.
You could use a similar process to identify the average
population size of low-income countries by spatially
grouping the objects within the left third of the x-axis
and computing the average size of the resulting groups,
allowing you to note that they tend to be small on
average, with low size variability.

Recent work has tested the ability of viewers to
estimate the mean value of collections within data
visualizations. One study tested how well viewers could
compare the mean position of two groups of points in a
scatterplot (Gleicher et al., 2013), focusing on how the
colors and shapes used to mark different data sets
affected viewers’ ability to compare their mean heights.
Some results were consistent with intuitions from
perceptual psychology. For example, using color to
distinguish the two groups (making points orange vs.
purple) led to higher accuracy in mean judgments
compared to using shape (making points circles vs.
triangles). But adding more diversity among the
distractor classes (e.g., adding green objects to the
orange and purple display) did not impair performance
for comparing mean position between the two groups,
as would be expected from previous work on visual
search (Duncan & Humphreys, 1989). Adding more
perceptual spacing between classes by combining cues
(orange and circular vs. purple and triangular) sur-
prisingly did not improve performance, contrary to
findings from previous work on visual search (Duncan
& Humphreys, 1989). Note that the underlying
mechanism for such mean position judgments may or
may not be an ensemble one, depending on your
definition of ensemble. If the horizontal and vertical
positions are truly averaged in the same manner as
other dimensions such as size or luminance, then the
definition fits. But if the center is computed by shape-
recognition heuristics that focus on a low spatial
frequency envelope (Harrison et al., 2014), then
whether that counts as ensemble coding depends on
your definition.

Another set of studies tested how well viewers can
estimate the mean and variance from visualizations of
time series data (Albers et al., 2014). These studies
showed trade-offs between how accurately viewers can
estimate mean and variance (summary tasks) versus
range and extrema (identification tasks) from data
visualized using either color or position. While each
statistic could be extracted from both visual features,
there was a salient difference between the types of tasks
best supported by each: Mean and variance were more
accurately extracted from data encoded using color,
whereas extrema and range were more accurately

extracted from positional visualizations. These results
suggest different processing abilities for color and
position—color may facilitate summation of values at
low spatial frequencies into a representation similar to
a color histogram, while position may better represent
shape-boundary properties. At the same time, the
results show a trade-off for visualization design—color
better supports summary tasks, while position better
supports identification tasks.

People can also estimate the mean of a set of
orientations (Parkes et al., 2001). Not all types of
orientation are averaged with the same precision: The
average orientation of the boundary contours of a set
of objects can be more precisely extracted than the
average orientation of their internal textures (Choo et
al., 2012). In visualizations like the weather map shown
in Figure 5b, this predicts an improved ability to
summarize wind directions in maps that use oriented
glyphs over maps that use oriented textures. Here,
extracting a mean orientation across local regions has
clear utility for understanding how the general wind
direction in cold regions (purple) differs from the wind
direction in warm regions (red). Ensemble coding of
orientation is also useful in the stock market visuali-
zation in Figure 8a. How accurately could a financial
analyst determine whether the red company shows
more variable performance than the other? While the
Weber fraction for variance—the point where differ-
ences in variance become indistinguishable—has been
studied for orientation (Morgan et al., 2008), there are
far fewer studies of variance perception, compared to
studies of perceptions of average value.

Distribution statistics

We can extract mean and variance from a collection
of data points, but what about other aspects of a data
set’s distribution? For example, visualizations may
reveal the skew and kurtosis of a data set to a viewer.
The bar chart depicted in Figure 8b contains two data
sets that differ in skew. In more complex visualizations
of oceanographic data, skew and kurtosis of sea-
surface height are important for making predictions
about the movement and position of eddies for
applications in oil exploration, where eddies can
damage offshore drilling equipment (Hollt et al., 2014).
Little is understood about the accuracy or biases of our
perception of these high-order statistics. One possibility
is that the visual system does not encode skew per se
but may approximate it after extracting a collection’s
centroid (Dakin & Watt, 1997). Better insight into how
these statistics can be inferred by the visual system can
help in designing visualizations to support a broader
variety of statistical analyses on raw data.
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Numerosity

Visualizations regularly require viewers to judge the
numerosity of a set of data points (Figure 7c). This
judgment might be an estimate of an absolute number
of data points—how many bubbles are in Figure 7a?—
or a comparison between two or more values—are
there more purple or orange points in the scatterplot in
Figure 8c? Numerosity estimation is surprisingly robust
in the face of variability in other dimensions, such as
contrast, orientation, and density (Burr & Ross, 2008).
These findings align with results from visualization
showing that estimation of relative numerosity is robust
across color and orientation (Healey, Booth, & Enns,
1996).

However, changes in some featural dimensions, such
as luminance, can bias numerosity estimates. Darker
collections can appear more numerous (Ross & Burr,
2010), so a visualization designer should be careful
when using luminance to differentiate collections of
data whose relative numerosity is relevant to the
viewer. Grouping objects using visual connection can
cause viewers to underestimate the number of original
parts (Franconeri, Bemis, & Alvarez, 2009). A visual-
ization designer working with network data (typically
visualized as points connected by lines) should be wary
of the effect of these connections on number percep-
tion. The number of possible simultaneous numerosity
estimates may also be limited (Halberda, Sires, &
Feigenson, 2006), which implies that the number of
visually distinct categories in a visualization should be
limited if simultaneous numerosity estimation is
critical.

Understanding how the size of an item influences
perceived numerosity could help reduce bias when size
and quantity visualize independent dimensions. Cor-
rell, Alexander, and Gleicher (2013) found that in
comparing the quantities of red and blue words in
displays like Figure 5a, longer words biased viewers

toward perceiving a higher quantity. These results led
to a new visualization approach that helps account for
this bias: Increasing the spacing between letters in
short words increases the overall length of the colored
word, and improves numerosity estimation in text
displays.

Segmentation tasks

Segmentation tasks require viewers to organize data
points into subsets (Figure 9). Unlike identification
tasks that isolate data points that adhere to specific
constraints, these subsets are formed based on their
similarity within some visual dimension, typically either
space (position) or a feature dimension (e.g., color or
orientation). Ensemble processes might guide these
segmentation tasks by providing distributional infor-
mation that allows detection of salient spatial or
featural clusters. For example, if luminance values
formed a bimodal distribution, with one light mode and
one dark mode, it could signal two corresponding
clusters of points.

Segmentation by spatial position

Segmentation is perhaps most intuitive when data
are mapped to spatial position. Viewing Figure 9a, it is
apparent that there are five primary spatial groups
(Figure 9b). Spatial segmentation helps viewers quickly
form meaningful subsets of related items within a data
set. For example, in Figure 5c we see multiple spatial
clusters that identify countries with similar demo-
graphic properties: a tight cluster of countries that
share both high GDP per capita and high life
expectancy in the upper right corner of the visualiza-
tion, a looser cluster in the center with intermediate

Figure 9. Segmentation tasks, such as (b) spatially or (c) featurally clustering data elements, require the viewer to visually segment the

data set into discrete clusters.
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GDP per capita and life expectancy, and a scattered
group of countries in the lower left with low GDP per
capita and life expectancy. The importance of this
segmentation process demands several explanations
from perceptual psychologists, such as what counts as a
cluster in the visual field, how many clusters can be
created, and what might bias this segmentation process.

Understanding visual grouping may be particularly
useful in answering some of these questions. For
example, spatial clustering should be largely based on
the gestalt grouping cue of proximity, and studies of
proximity grouping suggest that it is a parallel and
mandatory cue (Rock & Palmer, 1990). It also tends to
dominate over other grouping cues, such as color
(Oyama, 1961). While several clusters can be con-
structed simultaneously across a display, performing
additional operations on these clusters, such as
extracting the shape of each collection, can be a slow,
or even strictly serial, operation (Trick & Enns, 1997).

An understanding of segmentation in data visuali-
zations will also require an understanding of visual
crowding. Items that are identifiable on their own can
become indistinguishable or crowded when surround-
ing objects are too close (Whitney & Levi, 2011), and
this problem worsens in the periphery (Pelli, Palomares,
& Majaj, 2004). Crowding limits could contribute to
the limit on the number of clusters that can be created
in a visual display (Franconeri, Alvarez, & Cavanagh,
2013).

Segmentation by features

A viewer can also cluster data points using featural
similarity. Figure 9c depicts an alternative segmenta-
tion of the display in Figure 9a, using color value
instead of spatial position. Figure 10 depicts an
example where data can be clustered by orientation and
color, ignoring their locations. Figure 5 depicts
clustering by color and orientation in more complex
displays: Data in all four visualizations can be clustered
according to color values, data in Figure 5b can be
clustered by orientation, and data in Figure 5c can be
clustered by size. These types of segmentation opera-
tions might rely heavily on feature distributions
generated by ensemble coding. If a distribution is
bimodal or multimodal, that information could un-
derlie the viewer’s understanding that a display
contains two or more dominant values (Utochkin,
2015)—which the viewer might inspect sequentially by
attending to each value in turn.

In some cases, using multiple visual features within a
single visualization may make feature clusters harder to
see in either feature dimension alone. For example, a
visualization might use color hue to encode one
property of a data point and luminance to encode a
second property. Luminance variation across these
points might inhibit viewers’ abilities to segment points
that have similar hues. It may likewise be difficult to
segment different points of different luminance levels if
their hues are vastly different (Callaghan, 1984).

Figure 10. Segmentation tasks, such as clustering, can be accomplished not only with positional mappings but also by featural

mappings like color or orientation.
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However, some features may support more robust
segmentation. For example, if both color hue and
shape are used to encode different properties of a data
set, segmenting points based on shape is likely to be
more challenging for shapes of different hues, whereas
viewers can segment points of different colors regard-
less of shape (Callaghan, 1989). Understanding the role
of ensemble coding in segmentation may offer guidance
for which features (or combinations thereof) can help
viewers better identify divisions in visualized data.

Structure estimation tasks

Structure estimation tasks require viewers to extract
patterns from sets of data points that are not always
intuitively captured by single statistics (Figure 11).
Anscombe’s quartet (Figure 2) illustrates the impor-
tance of structure estimation tasks: The four data sets
are identical across several statistics, yet have qualita-
tively different patterns. These patterns often require
visualizations for a viewer to understand them.

Trend detection

Detecting trends—the qualitative relationship be-
tween two variables—is perhaps the most ubiquitous
form of structure estimation. The reader is likely most
accustomed to trends between two variables mapped to
position on a Cartesian grid, as in a scatterplot (Figure
11b). The trend that as x increases, y increases is
immediately apparent and appears linear, as opposed
to curved or U-shaped. The visual system is adept at
comparing the relative strength of linear correlations
(Figure 11c; Harrison et al., 2014; Rensink & Bal-
dridge, 2010). While the most common (and likely most
powerful) visual mappings for representing the trend

between two variables pair two spatial dimensions,
feature-based depictions are also common when both
spatial dimensions have already been mapped to other
aspects of the data. For example, the bubble chart in
Figure 12a may not contain an x-y trend, but size
clearly increases with the x value. Figure 12b depicts a
trend that relies on neither spatial axis, but it is clear
that as size increases, luminance decreases.

More complex examples of such trends between a
positional dimension and a featural dimension are
depicted in Figure 5a and d—certain colors occupy
certain spatial positions in each of these displays. In
Figure 5a, this trend reflects that words common in
novels (red) are more frequent at the beginning of the
passage, whereas words associated with philosophical
discussions (blue) are more frequent at the end
(Alexander, Kohlmann, Valenza, Witmore, & Gleicher,
2014). Figure 5d visualizes the 2,000 most popular
works per decade over the last 350 years, with each
decade represented by a row and word popularity
mapped to the x-axis. The figure shows that words that
are popular in modern writing (purple) have slowly
replaced those that were popular in earlier texts
(orange; Albers, Dewey, & Gleicher, 2011).

When trends are depicted across two spatial axes, we
have some idea of how they might be detected. For
example, simple shape-recognition networks might
classify whether a cloud of points matches an oval, a
curve, or a U-shaped object (e.g., Field, Hayes, & Hess,
1993; Uttal & Tucker, 1977), though some data suggest
that such simple tricks may not be sufficient to explain
performance, at least for certain kinds of trends
(Rensink, 2014). The ability to identify these shapes
within visualized data may help reveal complex
relationships between variables. For example, mapping
two variables to position will form a line if they are
highly correlated or a parabola if there is a quadratic
relationship between them. But when at least one
feature dimension is involved, our understanding of
how such patterns are recognized or encoded shrinks

Figure 11. Structure estimation tasks extract patterns from collection of values, such as (a) trends and (b) correlation. In these

scatterplots, these tasks can be computed across both position and color.
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drastically. There is evidence that the visual system is
capable of detecting featural correlation, sometimes as
effectively as with positional correlation (Rensink,
2014), and that correlation may be estimated with
similar accuracy across visualization designs using
several different kinds of features (Harrison et al.,
2014). However, it is not clear whether this ability
generalizes to other forms of trend detection, such as
characterizing nonlinear relationships between features.

One possible strategy for characterizing featural
trends is that a form of ensemble coding extracts one or
two feature distributions from the display and they are
compared. While there is some evidence that this cross-
feature pattern detection may occur for orientation and
size (Oliva & Torralba, 2006), the mechanism for this
detection is unclear, as is whether it works for other
feature combinations. We see this problem as a fertile
one for perceptual psychologists to explore.

An innovative set of proposals suggest a more
mechanistically precise alternative for detecting featural
trends: that trends involving at least one feature
dimension are processed by serial selection of certain
feature values at a time (Huang & Pashler, 2002, 2007).
For example, extracting a trend between luminance and
size in a bubble chart might involve selecting dark and
then light items, approximating the mean size at each of
these luminance levels, and storing each mean size in
memory for later comparison. Note that this method of
structure estimation would be more similar to the
segmentation operations in the previous section than
the other operations in this section. There is evidence
for this type of serial processing in some kinds of visual
comparison (Huang & Pashler, 2002) and visual
grouping (Huang & Pashler, 2007; Levinthal &
Franconeri, 2011), but there is a need for empirical
work demonstrating that such a model could explain
trend detection among, for example, the graphs shown
in Figure 12.

Similarity detection

Another aspect of structure estimation is determin-
ing similarity across different regions in a data set, such
as inferring how similar wind currents are across
different geographic or temperature regions (Figure
5b). Similarity detection occurs at different scales: from
the more holistic task of estimating the similarity of the
shape of two line graphs to the more local task of
detecting small repeated patterns across two line graphs
(Figure 12c). Detecting repeated structures, commonly
called motifs, across a data set is important in
applications such as biology, where these patterns often
indicate blocks of genetic material with important
biological functions that are conserved across different
organisms (Albers et al., 2011; Meyer, Munzner, &
Pfister, 2009), or in time-series data, where they often
represent related events (Lin, Keogh, Lonardi, Lank-
ford, & Nystrom, 2004). Important motifs may appear
among noise or other distortions within a data set or
may be inverted in order. For example, in visualizing
energy usage over time, an event (e.g., turning on a
device) may cause a drastic increase in energy usage.
This motif indicates the event occurrence, and the
motif’s inversion may occur when the event ends (e.g.,
the device is turned off). How might the visual system
detect similarity between different collections in a
visualization? How might it find small-scale repeated
patterns that form motifs, and how do noise and
inversion influence our ability to identify these pat-
terns? How might the efficiency with which we
determine similarity change for different visual fea-
tures?

Ensemble coding may be an important part of
computing similarity between visualized collections.
For colocated objects, the visual system might compute
variance in a region (Morgan et al., 2008), and regions
of low variance indicate high local similarity. The visual

Figure 12. Trend and motif detection are two examples of structure-recognition tasks in visualization.
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system might identify motifs by detecting small regions
with similar ensemble statistics as a viewer scans a
display. A potential strategy for estimating similarity
across different clusters, such as red and blue points in
a scatterplot, might involve computing ensembles
within spatial or featural clusters (Corbett & Melcher,
2014) and then comparing those statistics between
clusters (Dakin, 2014). This strategy relies on compar-
ing ensembles as opposed to detailed patterns to
estimate similarity across different subsets of data and
correlates well with how viewers perceive similarity
between pieces of artwork, another type of complex
visual scene—here, perceived similarity correlates with
comparisons between mean luminances of corre-
sponding spatial regions in a painting (Graham,
Friedenberg, McCandless, & Rockmore, 2010).

Distribution shape

Understanding the shape of a data distribution is
important for a number of statistical inference tasks. In
understanding demographics data, a viewer may wish
to characterize the distribution of wealth across a
population. Alternatively, the viewer may wish to

compare different attributes of a population, such as
the distribution of age versus that of income.

Prior work provides evidence of an interaction
between ensemble coding processes and properties of
featural distributions, such as smoothness and range of
variance (Utochkin & Tiurina, 2014). However, little is
known about how well the visual system might infer
whether a distribution is uniform, Gaussian, multi-
modal, or some other classification. For positional
representations, ensemble coding seems to allow a
viewer to readily perceive the mean and variability of a
collection, but other aspects of the distribution might
be available as well (Figure 13). How well—if at all—
can the visual system perceive distribution shape? And
how might encoding data with different visual features,
such as color or luminance, affect that ability?

Conclusions

Data visualizations allow us to explore and analyze
data using our visual system by mapping data values to
spatial positions and visual features. Because viewers
can use ensemble coding to efficiently extract statistical

Figure 13. Visualizations may communicate important information about the distribution of values within a data set, beyond simply

mean and variance.
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information from a data set, a better understanding of
these ensemble mechanisms could provide design
guidelines for data displays that maximize a viewer’s
ability to process data visually. The fact that many of
these guidelines have yet to be firmly established—what
types of visual features and displays facilitate what
kinds of visual statistical decisions—reveals unsolved
questions for perceptual psychologists. These factors
make the study of ensemble coding of data visualiza-
tions a fertile territory for collaboration between the
perception and visualization communities.

To help organize the discussion at this interface, we
have introduced a task categorization and surveyed
both past work and open problems for each category,
across perception and visualization. The four categories
of tasks are ubiquitous in data visualization: identifi-
cation, summarization, segmentation, and structure
estimation. A single example can clearly illustrate the
importance of each of these tasks: tagged text
visualization (Figure 5a). You can quickly identify
outlier text tags in blue in the first paragraph. You can
summarize that there are two to three dozen red tags in
total. You can segment the major division between red
tags in the top paragraph and blue in the bottom. And
you estimate structure in the data to detect a red-to-blue
trend that is systematically related to vertical position
in the text.

In addition to ensemble coding, research on the
control of visual attention is relevant to all four task
categories. In the examples that we have explored, we
assume that viewers have perfect control over which
subset of data they operate on—the data points on top,
the red objects, the triangles, and so on. In reality,
visually selecting relevant data points can be difficult or
noisy. For example, data displays often contain
animations, motion, or transients that can distract the
viewer (Bartram, Ware, & Calvert, 2003; Hollingworth,
Simons, & Franconeri, 2010) and may impair selective
ensemble coding of only the relevant visual features.
Attentional control can be especially difficult when
multiple dimensions of data are depicted simulta-
neously. For example, a bar graph might map sales to
color, profits to height, and time to horizontal order.
This visualization would present multiple dimensions
of information via multiple visual features simulta-
neously. Work on attentional control shows that when
there is simultaneous variability in multiple feature
dimensions, the ‘‘wrong’’ dimension can distract the
viewer (Lustig & Beck, 2012). Some existing work
explores attentional control in the context of data
visualization (for a survey, see Healey & Enns, 2012),
but many questions of interest to both communities
remain. Both perceptual psychology and data visuali-
zation would benefit from a better understanding of
whether our current conclusions about attentional
control, which draw from a set of laboratory tasks,

apply to the more complex displays found in data
visualization. Collaboration with data visualization
researchers brings this benefit to perceptual psycholo-
gists more generally, as a way of testing whether
knowledge gained from simplified displays and tasks is
robust across new contexts.

Our categorization of tasks and links to relevant
work in both communities are by no means intended to
be exhaustive—and will not be the last word. Instead,
our goal is to foster conversation between these
communities around ensemble phenomena. We find
three themes particularly exciting.

First, we assume that the collection of visual
processing abilities that we call ensemble coding—
processing of information that can be extracted and
combined in parallel from large numbers of objects at
once—evolved and developed to compute statistics in
the natural world. Those statistics are likely to be based
on heuristics and other ‘‘good enough’’ strategies that
suffice for the natural world, but we know that some
ensemble judgments introduce biases in statistical
inferences from data displays that would not be present
in formal computed statistics (Sweeny, Haroz, &
Whitney, 2012). How common are those biases, which
are potentially problematic among different visual
features, and how can data displays be designed to
avoid them?

Second, there is research in data visualization that
explores which dimensions allow the most precise
extraction of individual values (e.g., Cleveland &
McGill, 1984). These studies have found that spatial
position is precise, object length is not quite as good,
angular extent is bad, and color saturation is among the
worst methods for precisely representing individual
data values. But these rankings change for ensemble
coding. For example, color depictions can beat spatial-
position depictions when a viewer needs to analyze
average values from a subset of raw data (Albers et al.,
2014). While inconsistent at first glance, we believe that
this contrast may inspire a new requirement for
dimensions that lead to efficient ensemble coding—they
may actually have to be imprecisely coded, so that their
distributions tend to overlap, leading to better repre-
sentation of distributions as a whole. In contrast,
dimensions that are precisely coded may be tougher to
combine, because representations of values tend to
remain individuated (Franconeri et al., 2013).

Third, we believe that collaborative work between
these communities will help perceptual-psychology
researchers define the set of operations that are possible
via ensemble coding. Currently, judgment of average
value is the dominant task given to participants in these
studies. We hope that we have shown that other
judgments, such as range, median, skew, modality, and
correlation (e.g., Rensink & Baldridge, 2010), would
provide excellent testing grounds for exploring whether
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these values are extracted via ensemble coding or by
combining ensemble codings with other visual strate-
gies.

Keywords: ensemble encoding, data visualization,
visual search
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