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Abstract—Recent visualization research efforts have incorporated experimental techniques and perceptual models from the vision

science community. Perceptual laws such as Weber’s law, for example, have been used to model the perception of correlation in

scatterplots. While this thread of research has progressively refined the modeling of the perception of correlation in scatterplots, it

remains unclear as to why such perception can be modeled using relatively simple functions, e.g., linear and log-linear. In this paper,

we investigate a longstanding hypothesis that people use visual features in a chart as a proxy for statistical measures like correlation.

For a given scatterplot, we extract 49 candidate visual features and evaluate which best align with existing models and participant

judgments. The results support the hypothesis that people attend to a small number of visual features when discriminating correlation in

scatterplots. We discuss how this result may account for prior conflicting findings, and how visual features provide a baseline for future

model-based approaches in visualization evaluation and design.

Index Terms—Information visualization, perception and psychophysics, evaluation/methodology, Weber’s law, power law

Ç

1 INTRODUCTION

IN a recent study, Rensink and Baldridge demonstrated
that the perception of correlation in scatterplots can be

mathematically modeled using Weber’s law [1]. In followup
experiments, Rensink showed that this law is robust to
changes in data characteristics and scatterplot design
choices [2]. Based on these findings, Harrison et al. repli-
cated the original study by Rensink and Baldridge, moving
beyond scatterplots to measure and compare the effective-
ness of a range of visualizations [3]. Their results indicate
that the perception of correlation in all of these bivariate
visualizations can be modeled using Weber’s law. Together,
these studies sparked a renewed interest in the information
visualization community towards better understanding
the underlying mechanics of visualization and modeling
approaches, such as Kay and Heer’s followup analysis of
Harrison et al.’s released experimental data [4].

Beyond the information visualization community, res-
earchers in perceptual psychology have also studied scatter-
plots at length, in particular attempting to develop models
that capture how people estimate correlation from them.

For example, Boynton studied the perceptual dimensions of
covariation estimate, producing a model that used elonga-
tion ratio and standard error as factors [5]. Meyer et al. fit the
perception of correlation in scatterplots to a power func-
tion [6]. Others studies include Pollack [7], Jennings et al. [8],
and Cleveland et al. [9], all of whom attempted to formally
model the relationship between perceived and objective cor-
relation in scatterplots.

A recurring hypothesis in these studies is that peoples’
perception of correlation in scatterplots is related to visual
features in the visualization. The intuition is that participants
are not directly perceiving correlation per se, but rather,
visual features produced by the visualization technique
(i.e., scatterplot) that are related to correlation. Meyer and
Shinar, for example, suggested that estimates of correlations
from scatterplots are partly based on perceptual processes
influenced by “visual properties” of the charts and are unre-
lated to participants’ formal statistical training [10]. Lauer
and Post included some of these factors in their models,
such as regression slope and point dispersion, along with
factors such as screen size [11]. More recent work from
Rensink showed that correlation judgments can be made
within just a few hundred milliseconds, suggesting a
“heuristic” approach to discriminating correlation [2]. These
studies all suggest that visual features of some sort may
underlie human’s perception of correlation.

The goal of this paper is to bridge these two sides of
research, bringing findings from perceptual psychology to
large-scale approaches for modeling perception in the infor-
mation visualization community. Such an approach could
help explain the extent to which visualizations such as scat-
terplots are effective for judging correlations and provide
explanations for when they might become ineffective.

The core concept in this paper is the use of visual features in
modeling of the perceptual process. As used here, the term
feature refers to a visual feature refers to the perceivable and
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distinguishable properties (e.g., shape, dispersion, and ori-
entation) in a 2D image or a part of an image. Outfitted with
this concept, our paper takes a computational approach
towards evaluating how visual features manifest in models
of the perception of correlation in scatterplots, including
the approaches proposed by Rensink and Baldridge,
Harrison et al., and Kay andHeer.

Fig. 1 illustrates an overview of our proposed research.
Here, the yellow path shows the general research methodol-
ogy proposed by Rensink and Baldrige and adopted by
Harrison et al. and Kay and Heer. In this approach, a dataset
with a known correlation value (r) is mapped to a scatter-
plot (C1); participants are asked to compare the correlation
values between two scatterplots in a judgment (C4). From
participants’ judgments, the perceptual model of correla-
tion is built. In contrast, our approach moves further to
examining whether visual features in scatterplots tackle
the participants’ judgments (C1 ) C2 ) C3, the blue path
in Fig. 1).

Toward this goal, we begin by replicating the methodol-
ogy and experiments from Rensink and Baldridge [1], [2]
and Harrison et al. [3] (Section 2) to collect a set of judgment
data. To create a set of visual features, we broadly examine
the perceptual psychology, visualization, and computational
geometry literature to collect a set of candidate features that
can be computed from scatterplots. In total, we identify and
extract 49 candidates from scatterplots (Section 3).

Out of the 49 initial candidates, our analysis shows that
the participants’ judgments highly correlate with four, such
as the dispersion of the point cloud around the regression
line (Section 4). We evaluate their performance against sev-
eral model metrics. We find that models using these top-
performing features are at least as precise as existing models
(Section 5). Building on top of these analyses, we examine
power transformation, a fundamental part of modeling in
perceptual psychology, to create a new model of the percep-
tion of correlation in scatterplots. The resulting model out-
performs the original models in precision, and is also more
easily understandable, as it directly relates to visual features
commonly inferred from scatterplots (Section 6).

As such, this paper contributes a new perspective on
modeling the perception of correlation in scatterplots. Our
findings indicate that the use of visual features can lead to
more precise mathematical models of behavior, while sug-
gesting plausible theories about how people perceive scat-
terplots and extract information from visualization. More

specifically, our work contributes to the field of visualiza-
tion in three ways:

� We evaluate the longstanding hypothesis that partic-
ipants use visual features instead of correlation itself
when judging correlation in scatterplots;

� We establish that visual features can be integrated
into the approaches proposed by Rensink and
Baldridge, Harrison et al., and Kay and Heer without
loss of precision;

� We develop a new, more precise model based on
these existing models by using power transforma-
tion, which has an additional benefit of linking mod-
els to existing work in perceptual psychology.

2 REPLICATION: DISCRIMINATION THRESHOLDS

AND JUDGMENTS FOR SCATTERPLOTS

In this section, we introduce our experiment with three
goals in mind: 1) collect data for our modeling approach,
2) faithfully replicate the prior results,1 and 3) familiarize
the readers with the terminology used in this paper.

The experiments by Rensink and Baldridge, and
Harrison et al. are based on the discrimination of correlation,
and have three components: 1) side-by-side comparison of
two scatterplots with data of different correlation values,
2) the use of above and below approaches to estimate discrimi-
nation thresholds from both sides of a target correlation
value, and 3) a staircase method [12] to modulate the differ-
ence in correlation values between the two scatterplots.

More specifically, this kind of experiment presents scatter-
plots with underlying data having regression lines along the
45� axis y ¼ x (see Fig. 2). In a judgment, a participant must
indicate which of the two side-by-side scatterplots appears to
have the higher correlated dataset: onewith a fixed correlation
value (r), the other generated from a dataset with a different
correlation value (r� Dr). The fixed correlation can be one of
[0.3, 0.4, 0.5, 0.6, 0.7, 0.8], and remains so until a stable dis-
crimination threshold is reached. The sign of Dr is positive or
negative depending on the approach: in the above approach,
the sign is always positive (i.e., plus); in the below approach,
the sign is always negative (i.e., minus). The value of Dr typi-
cally changes as a trial progresses, as determined by the
staircase method. The value of Dr decreases by 0.01 if the

Fig. 1. An overview of this paper: we propose to investigate the visual
features in the scatterplots to study the perception of correlation (the
blue path, C1 ) C2 ) C3), as opposed to a direct study approach using
correlation to model the perception by Rensink and Baldrige,
Harrison et al., and Kay and Heer (the yellow path, C1 ) C4).

Fig. 2. An example of approaching a target correlation level from below
in the experiments. Two side-by-side scatterplots (without any indication
of actual correlation value or the regression line) are shown to the partici-
pant in the experiment. The participant chooses which of the two
appears to be more correlated.

1. Although Harrison et al. had published their experimental data,
and the same data was used by Kay and Heer, a new experiment is nec-
essary due to a change to allow our inclusion of visual features.
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participantmakes a correct judgment, and increases by 0.03 if
the participant makes an incorrect judgment (see Fig. 4a), so
that steady-state behavior corresponds to 75 percent correct.
We make one minor modification to the experimental design
used by both Rensink and Baldridge and Harrison et al. In
the prior experiments, a trial terminates when Dr converges
over the course of last 24 judgments via a successful F test
(a ¼ 0.1), or 50 judgments have been made (see Fig. 4a). To
avoid premature convergence and allow the computation for
a set of visual features, in our experiment, a trial is always
comprised of 50 judgments. The inclusion of 50 judgments
makes it possible to compare visual features with correlation
and also makes it necessary to first compare the result of our
replication experiment to the original experiment.

For this modified experiment, we recruited 95 partici-
pants (33 female) via AmazonMechanical Turk, with partici-
pants receiving $2.20 for their time (commensurate with the
U.S. minimumwage). The experiment collected participants’
judgments with the two datasets, participants’ answers, the
correct answers, and the experiment conditions (e.g.,
approach). In total, 19,000 judgments were collected.

To validate the results from this experiment, we compute
Just-noticeable Difference (JND) of correlation from the data and
compared it with the dataset published by Harrison et al. [3].
JND (see Section 5) is the measurement of discrimination
used in Rensink’s, Harrison et al.’s, and Kay andHeer’s work.
These two sets of JNDs are plotted in Fig. 3, following the style
of comparisons made by Kay andHeer’s [4]. When compared
using the Kolmogorov-Smirnov test [13], the difference is a
marginally significant (D ¼ 0:094, p ¼ :059). Along with the
visual similarity between our data and the data by
Harrison et al., it validates our modified experimental design
and the resulting data.

3 VISUAL FEATURES IN SCATTERPLOTS

To examine whether visual features are used by participants
in judging correlation, we first conduct a survey of visual
features commonly used in visualization, perceptual psy-
chology, statistics, and computational geometry.

This survey is a summary based on literature of candi-
dates of visual features that might represent correlation in
scatterplots. Work in perceptual psychology suggests twelve
visual features, including the dispersion of points [6], [10]
and the prediction ellipse of Cleveland et al. [9], [19]. The
visualization literature suggests ten more, including several
features related to correlation from Wilkinson’s Scagnos-
tics [16]. Statistics and data science literature suggests

twenty-five visual others, such as density [17]. Computa-
tional geometry suggests the convex hull, which used to
describe the general shape and size of the point clouds.

These visual features can be clustered into eight concepts
across four groups. The first group are features that pertain
to length, such as the length or width of the bounding box
that surrounds the points. The second group is based on
area, such as the area of a convex hull. The third group is
based on shape, which is made of dimensionless quantities,
such as the ratio of two length features. The final group
includes those features that similar to density, such as the
average distance of all points to the regression line. Table 1
shows the set of all 49 features. More precise definitions of
the visual features can be found in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2018.2810918.

This list is intended to be broad, but not necessarily
exhaustive, as further work may yield new candidate fea-
tures. In the section below we describe how we evaluate
each visual feature and use it in various perceptual models.

4 IDENTIFYING VISUAL FEATURES

In this section, we investigate the relationship between visual
features and participants’ judgments of correlation using
regression analysis. The earlier studies by Rensink and Bal-
dridge, Harrison et al., and Kay and Heer found that the dis-
crimination threshold (i.e., JND) varies with as the base
correlation level. In particular, higher correlations were
found to have smaller JNDs than low correlations (i.e., were
more easily discriminated). The critical difference in our
approach is to modulate not only correlation values, but also
candidate features and use these results to determine which
models and features best alignwith participants’ judgments.

Fig. 4 illustrates our study approach. The intuition is that
visual features can better explain participants’ judgments
than correlation values. Fig. 4a shows two example trials
from the replication experiment. The experiment modulates
the difference in correlation between the scatterplots (Dr,
the y-axis) based on the correctness of participants’ judg-
ments (the x-axis). Intuitively, participants should be better
at justifying a difference when Dr is larger. However, Dr
may not fully predict whether a participant will judge cor-
rectly. When Dr is the same in two different judgments, the
participant may make a correct judgment for one, and an
incorrect judgment for another. Part of this may be due to
random chances, for example, a participant may sometimes
choose one or the other by mistake. Another possible cause
is the existence of misleading visual features produced in
the scatterplots, which make a particular scatterplot pair to
be difficult to discriminate.

At a conceptual level, visual features may align more
closely with participants’ judgments than the actual correla-
tion values presented in the scatterplots. Consider a hypo-
thetical feature that perfectly predicts participants’
judgments (Fig. 4b). For such a feature, when its difference
is above a certain threshold, the participant should always
make a correct judgment and vice versa (excluding the
small chance for random mistakes). Thus, visual features
that highly correlate with the participants’ judgments are
likely candidates employed by the participants to compare
correlation in scatterplots.

Fig. 3. The two sets of JND from Harrison et al.’s [3] and our replication
experiment. The distributions of two datasets are similar, indicating that
they are similar and comparable.
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4.1 Pair Judgment Data

The judgment data used contains the following attributes:
difference in correlation between the two scatterplots (Dr,
magnitude), differences in visual features between the two
scatterplots (Dv, magnitude), along with the base correlation
r ([0.3, 0.4, 0.5, 0.6, 0.7, 0.8]), approach ([above, below]), and
judgment correctness ([correct, incorrect]).

These data are visually inspected using scatterplot matrix
and correlation matrix, with two goals in mind: first,

remove extreme values that could indicate possibly spuri-
ous judgments; second, resolve collinearity between differ-
ent visual features that can significantly affect the outcome
of a regression analysis [20].

In all, we remove 4 out of 19,000 judgments that stem
from participants’ erroneous input during the experiments
(see Fig. 5a). Collinearity is investigated by computing pair-
wise linear dependence between all visual features and
correlation. Most features used in our data exhibit some

TABLE 1
The Concepts of Candidate Visual Features

Fig. 4. Example trials from our experiment with 50 judgments for each. In these figures, x-axis shows the judgment number, while y-axis is the depen-
dent variable in the experiment, such as the difference in correlation between the two scatterplots. a) Two trials from our replication experiment. Note
that Dr increases for an incorrect judgment and vice versa. The left and right show examples of converged and not converged trials, respectively.
The difference is whether there is a window of 24 judgments that have similar differences in correlation. In the original experiment by Rensink and
Baldridge and Harrison et al., the 24 judgments inside the gray rectangles were used to compute JND, and the trial terminates if it is converged. In
our new experiment, the trials continue anyway until 50 judgments have been made. b) An example scenario assuming an ideal visual feature that
perfectly predicts the participant’s judgments. The grey dashed line represents the JND of that visual feature. Note that all correct judgments are
above the grey line and all incorrect judgments are below. c) The changing of the difference in the visual feature the standard deviation of all perpen-
dicular distances to the regression line over the course of a trial. Note that, while not perfectly following the ideal visual feature in b), this visual feature
highly correlates with the participant’s judgments.
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amount of collinearity with the correlation value (r) and
other visual features (see Figs. 5b and 5c). We remove 5 line-
arly dependent features that can be trivially derived from
one another, resulting in a final set of 44 features.

4.2 Modeling Judgments Using Standardized
Weighted Logistic Regression

To determine the relation between participants’ judgments
and the visual features, we apply a technique known as
standardized weighted logistic regression for four reasons:
1) Logistic regression can model dependent variables that
are dichotomous (binary), and 2) it does not assume particu-
lar distributions about the independent variables [21], [22].
In our data, judgments are the binary dependent variable,
being either correct or incorrect. 3) Weighted models com-
pensate for the imbalance between judgment counts (i.e., 75
percent of the judgments are correct and 25 percent incorrect)
to avoid skewed results. 4) Standardized models transform
models with different value ranges to the same so that all
model coefficients are comparable.

Specifically, our logistic regression has the form:

g ¼ b0 þ b1ai þ b2ri þ b3Dxi; (1)

where g represents the logit function, r is the fixed correla-
tion level in the experimental procedure, a is the approach
(above or below, see Section 2), Dx represents the difference
in the stimuli (i.e., Dr or Dv, the y-axis in Fig. 4), b is the
model coefficients, and i represents each of the 18,996 judg-
ments. Note that the inclusion of r and a follows the work
of Rensink and Baldridge [1] where the authors show that
the perception of correlation is affected by the amount of
correlation as well as the approach used in the study.

Using standardized weighted logistic regression, we first
build the null model using a constant as the independent
variable. A second step is to construct the model based on
correlation (r). This sets a baseline for eliminating visual
features that are less predictive of participants’ judgments.
The third step is to build a model for each visual feature and
compare it against the model of correlation. The separate
modeling avoids issues raised by collinearity and allows
a comparison of models using multiple statistics metrics.

4.3 Model Metrics

We apply three types of metrics commonly used in evalu-
ating logistic regression models [23]. First, using odds
ratios [24], we analyze the effectiveness of each independent
variable (e.g., the difference in a visual feature Dv) when
explaining participants’ judgments. Second, we examine the
quality of the regressionmodel using theAkaike Information
Criterion (AIC). Lastly, we compare the regression model of

a visual feature to the regressionmodel of correlation using a
Cox test [25]. The Cox test evaluates two non-nested models
by fitting the regressors of one model into the fitted values of
the other, and it is measured by explanatory values: 1) we
use the Bonferroni correction [26] and set p ¼ :0011 as the
critical value; 2) we use a relaxed view where larger z-scores
are expected, since the sample size of 18,996 may result in
many p-values becoming significant.

Taken together, these metrics provide a means to evalu-
ate the candidate visual features, and identify the ones that
best account for the participants’ judgments.

4.4 Results

Table 2 shows the results of modeling each of the 44 visual
features, using the three metrics described above. The
numeric results and the results of additional statistical met-
rics can be found in Appendix C, available in the online
supplemental material.

4.4.1 The Null Model

The first line of Table 2 presents the null model. The model
has an odds ratio of 1, indicating that the independent vari-
able is not associated with any change in the dependent var-
iable (i.e., judgment correctness).

4.4.2 The Baseline Model

The next three lines of Table 2 show the results of the base-
line model, using only correlation (r) and its difference (Dr).
It does not contain any visual feature.

These results confirm that the difference in correlation is
closely associatedwith the participants’ judgments. The vari-
able r has an odds ratio of 1.35 (95 percent CI: [1.23, 1.48]),
indicating that one unit increase in r is 1.35 times (i.e., more)
likely to obtain a correct judgment. Approach, denoted as a,
has an odds ratio of 0.90 (95 percent CI: [0.82, 0.99]), indicat-
ing that the approach variable can be 0.90 times (i.e., less)
likely to obtain a correct judgment. This confirms that the
magnitude of correlation (r) itself impacts the judgments cor-
rectness, and the approach factor has a smaller impact as
originally reported by Rensink and Baldridge [1]. More
importantly, in the fourth line, the variable Dr has an odds
ratio of 1.30 (95 percent CI: [1.18, 1.44]), providing the base-
line for evaluating all our candidate visual features.

4.4.3 Visual Feature Models

We then compare the effectiveness of models built from
the visual features against this baseline model. If a visual
feature model is “better” than this baseline model, the
implication is that the visual feature is very likely to be used
by participants when judging correlation in scatterplots.

Fig. 5. Judgments data: Extreme values and the collinearity between visual features. We present a few examples. The full scatterplot matrix and cor-
relation matrix can be found in Appendix B, available in the online supplemental material, and notions can be found in Appendix A, available in the
online supplemental material. We use the term Pearson correlation coefficient (pcc) instead of “correlation” to avoid confusion.
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The remainder of Table 2 reports the performance of
each of the visual feature models. A visual feature model is
colored in blue if the model outperforms the baseline model
in that metric (e.g., odds ratios, AIC, and the Cox Test). As a
result, the four top-performing visual features are:

� the standard deviation of all perpendicular distances to the
regression line (dist_line_sd),

� the area of the prediction ellipse (ellipse_area),
� the length of the minor axis of the prediction ellipse (ellipse_

minor), and
� the length of the perpendicular side of the confidence

bounding box (conf_bounding_box_perp).
These outperform the baseline model (i.e., the model of cor-
relation) across all the metrics. In particular, the feature the
standard deviation of all perpendicular distances to the regression
line and the area of the prediction ellipse have similar effective-
ness while outperforming the other two regarding odds
ratios, AIC, and the Cox Test.

4.5 Summary and Discussion

These four visual features, based on modeling metrics, are
more predictive of participants’ judgments than correla-
tion itself. Coincidentally, these four visual features come
from different categories defined in Section 3: length, area,

and density. It may suggest that participants use several
visual features when judging correlation. This finding
suggests a step towards exploring multi-factor models in
future work.

The top-performing visual features support existing
hypotheses in prior research in perceptual psychology and
information visualization. For example, Meyer et al. identi-
fied the mean of the geometric distance between points and
the regression line as impacting participants’ ability to per-
ceive correlation in scatterplots [6], which is synonymous
with the feature the standard deviation of all perpendicular dis-
tances to the regression line.

These four features together all suggest that participants
seek dispersion measures along the regression line. For
example, the feature the standard deviation of all perpendicular
distances to the regression line uses standard deviation to
measure the density around the regression line; the feature
the length of the minor axis of the prediction ellipse only relies
on the minor axis, a confidence measure of the length of the
point cloud along the regression line. These observations
support the findings from perceptual psychology, as
Eades [27] (cited in Lane et al. [28]), Cleveland et al. [9],
and Meyer and Shinar [10] that the density and dispersion
of data points in scatterplots affect participants’ judgments.

5 MODELING PERCEPTION OF CORRELATION

USING VISUAL FEATURES

In this section, we examine the use of the visual features in
modeling the perception of correlation in scatterplots. We
investigate whether substituting visual features into the
existingmodels of perception of correlation results in perfor-
mance similar to those of the original models. In Section 5.1,
we describe the three models used in our study: a linear
model using mean observations (used by Rensink and Bal-
dridge [1] and Harrison et al. [3]), a linear model using indi-
vidual observations (by Kay and Heer [4]), and a log-linear
model using individual observations (by Kay and Heer [4]).
In Section 5.2, we propose a substitution method to verify
the effectiveness of the visual features.

5.1 Background and Overview

Rensink and Baldridge [1], Harrison et al. [3], and Kay and
Heer [4] introduced perceptual models that capture peoples’
ability to judge correlation in scatterplots. These models are
based on the concept of Just-Noticeable Difference (JND), a
measure of discrimination threshold. The JND describes the
minimum amount of change in a stimulus needed for a per-
son to reliably perceive a difference between two stimuli.
The relation between JND and the stimulus can be described
usingWeber’s law [29], [30]:

dP ¼ k
dI

I
; (2)

where dP is the differential change in perception, dI is the
differential increase in the stimulus, and I is the intensity of
the baseline stimulus. The parameter k is known as the
Weber fraction and is estimated via perceptual experiments.
Given a specific I and Weber fraction k, the JND corre-
sponds to the smallest increase of dI that will produce a
noticeable difference in perception.

TABLE 2
The Results of Modeling Judgments with

Correlation and Visual Features
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Based on the concept of JND, Rensink and Baldridge [1]
as well as Harrison et al. [3] proposed a model for the per-
ception of correlation. They measured JNDs from in-lab and
crowdsourced experiments, and aggregated participants’
JNDs into a Weber (linear) model. Kay and Heer, re-analyz-
ing the experimental data from Harrison et al. based on
individual observations, propose a non-linear model using
multi-level Bayesian statistics and logarithmic transforma-
tion, which improved the fit and generalizability.

Weber’s law generally applies to low-level perceptual
properties [29], such as discriminating line lengths. Line
lengths are closely related to two length visual features we
identified, as they explain judgments better than correlation
values. This observation implies that the modeling of the
perception of correlation in scatterplots, as Rensink and Bal-
dridge and Harrison et al. proposed, may be partially
explained by people using visual features as proxies of cor-
relation in the judgment process.

We use two techniques to determine the potential inter-
changeability between visual feature and correlation:

(1) Extend the existing models to the use of visual fea-
tures: we fit the data from visual features into the
three models proposed by Rensink and Baldridge,
Harrison et al., and Kay and Heer. A successful fit
would indicate a similarity between existing models
of correlation and models that use visual features.

(2) Algebraic substitution: we use algebraic techniques to
determine whether visual feature can reproduce the
original models of correlation. This analysis has two
purposes: (i) it may provide evidence that the visual
features are used as proxies of correlation judgment,
and as such, (ii) it may explain thatwhy low-level per-
ceptual laws apply to the perception of correlation.

Without loss of generality, the analysis below uses the
visual feature: the standard deviation of all perpendicular distan-
ces to the regression line (denoted as dist_line_sd), one of the
best-performing features from our previous experiment.
Analysis of the other three visual features yields similar
results, which are included in Appendix G, available in the
online supplemental material.

5.2 The Analytics Pipeline

This section presents our modeling procedure and the sub-
stitution technique (see Fig. 6). The modeling procedure
allows us to replicate extant models and extend them to
include the use of visual features. The substitution tech-
nique is used to validate that these features can be used in
lieu of correlation in the perceptual models.

We first generalize the relationship between perception
and level of correlation into the following form:

JNDr ¼ fðrÞ: (3)

The r subscript represents correlation r (i.e., I inWeber’s law).
The equation states that the JND of correlation (JNDr) is a
function (f) of correlation (r). The function f can have various
forms. For the linear model by Rensink and Baldridge and
Harrison et al., f is a linear function (Weber’s law). In the case
of Kay and Heer’s log-linear model, f is a log-linear function.
We replicate both of these forms as the first step of our
analysis.

Using a similar notation, we can likewise describe the
perception of a visual feature as:

JNDv ¼ fðvÞ: (4)

The v subscript represents visual feature (v). It states that the
JND of a visual feature (JNDv) is a function (f) of the mag-
nitude of that visual feature (v).

Although these two functions appear disparate, our rea-
soning is that if in fact visual features are proxies used by
participants to judge correlation (r) in scatterplots, then
these two functions would be interchangeable. Our substi-
tution technique builds on these equations and is simply a
series of operations that transform Equation (4) (Box 2 in
Fig. 6) into Equation (3) (Box 1 in Fig. 6), and evaluates the
equality between them.

These procedures can be integrated into a single analytics
pipeline with the following steps (see Fig. 6):

(1) Box 1 (f1): replicate the original model of correlation,
including the models by Rensink and Baldridge,
Harrison et al., and Kay and Heer.2

(2) Box 2 (f2): extend the original model to include the
use of the visual feature. Again, the example visual
feature used is the standard deviation of all perpendicu-
lar distances to the regression line (dist_line_sd).

(3) Box 3 (f3): model the relation between the JND of
correlation (JNDr) and the JND of the visual feature
(JNDv).

(4) Box 4 (f4): model the relation between correlation (r)
and the visual feature (v).

(5) Box 5!1’ (f10 ): derive a new model of the perception
of correlation based on the visual feature.

(6) Box 1’ versus 1: compare the derivedmodel of correla-
tion with the original model estimated from the
experimental data. This stepwill validate whether the
visual feature can replace correlation in themodel.

The forms of f1, f2, and f3 are consistent with each other
and vary, depending on different modeling techniques (e.g.,
linear, log-linear). We use a linear form for f4 uniformly to
simplify computation and avoid discrepancies between
different forms. The derivation of the substitution and a dis-
cussion of this assumption can be found in Appendix D,
available in the online supplemental material.

Fig. 6. Our analytic pipeline: replication (Box 1), extension (Box 2), and
substitution (Box 5). Box 1 represents the JND model of correlation
based on the experimental data; this can be extended to the visual fea-
ture (Box 2). Boxes 3 and 4 present the relation of correlation and the
visual feature and the relation of their JNDs, respectively. Substituting
Boxes 3 and 4 into Box 2 yields Box 5, simplified into Box 1’, and com-
pared to Box 1. This comparison validates whether the visual feature
can reproduce the model of correlation.

2. In both Rensink and Baldridge’s and Harrison et al.’s work, JND
is calculated using the average difference in correlation in last 24 judg-
ments over a trial (see Section 2 and Fig. 4a). Our modified experiment
uses 50 judgments with no convergence criteria. We instead use
weighted logistic regression to estimate JND based on all 50 judgments
in a trial. This approach is implicitly validated by the similarity
between the previous results and ours.
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5.3 Model Metrics

We employ two sets of evaluation metrics for our regression
analysis. First, we use metrics similar to those used to evalu-
ate the judgments models in Section 4, including p-value,
R2, and Akaike information criterion (AIC).3 Second, we
perform regression diagnostics, including testing normality
of residuals using the Shapiro test [33], skewness [34], kur-
tosis [34], and homoscedasticity of residuals using the Lev-
ene’s test [35]. Skewness and kurtosis measure different
aspects of the distribution, with a sign for direction (i.e.,
left- or right-skewed). We also illustrate residuals using
detrended Q-Q plots [36], a means to present residual distri-
bution, and in the case of normality, the difference between
normalized residual and unit normal quantile fall into with
the confidence band. Last, we visually inspect our results
and compare them to the results from the extant works.

5.4 Linear Model Using Mean Observations
(Rensink and Baldridge; Harrison et al.)

Proposed by Rensink and Baldridge and replicated by
Harrison et al., the first model in our analysis is based on
the mean discrimination thresholds to approximate a linear
function for correlation perception (i.e., Weber’s law).

5.4.1 Modeling

To replicate Harrison et al.’s results, we follow their
approach to mitigate large variations in individual perfor-
mance. We exclude participant averages outside 3 Median
Absolute Deviations [37] for a fixed correlation level (e.g.,
r ¼ 0.5). Within the given correlation level and approach
(e.g., approaching from below), participants’ data are aver-
aged to obtain an estimation of mean JND and further com-
bined using an adjustment [1]. The model has the form:

yi ¼ b0 þ b1xi þ "i; (5)

where JND is represented as y, written as a linear function
of the adjusted baseline intensity of the stimuli x (i.e., r or
v), with an overall slope b1, an intercept b0, and an error
term ". In this equation, i represents the mean observations
with 12 data points (i ¼ ½1::12�, r� approach ¼ ½0:3; 0:4; 0:5;
0:6; 0:7; 0:8� � ½above; below�).

5.4.2 Results

Fig. 7 and Table 3 report the results of the replication, exten-
sion, and substitution pipeline. Due to the small sample size
(n ¼ 12), we omit the results of regression diagnostics as
they are less meaningful [38]. As a result, we have

(1) Box 1 (f1): the linear regression fit of the correlation
data is satisfactory (R2 ¼ :96) when replicating the
existing models (see Fig. 7a). In addition, the coeffi-
cients of the regression slope (b1 ¼ �0.18) and inter-
cept (b0 ¼ 0.19) are close to those of Harrison et al.
(b1 ¼�0.17, b0 ¼ 0.17) [3], and not far from the results
from Rensink and Baldridge (b1 ¼ �0.20, b0 ¼ 0.22)
[1]. These comparisons establish that our replication
experiment data are consistent with previous find-
ings, inviting a further comparison to the models
using visual features.

(2) Box 2 (f2): we observe a decent fit (R2 ¼ .81) when
extending themodel to the visual feature (dist line sd,
see Fig. 7b).

(3) Box 3 (f3): JNDr and JNDv can be fit by a linear
function (R2 ¼ .99).

(4) Box 4 (f4): correlation (r) and the magnitude of the
visual feature (v) are linearly correlated (R2 ¼ .99).

(5) Box 5 ! 1’ (f10 ): we derive a new model of correla-
tion perception using the visual feature. This model
has the coefficients b1 ¼ �0.18 and b0 ¼ 0.19.

(6) Box 1’ versus 1: we compare the new derived model
with the original one. We see that the two models
are nearly identical (see Fig. 7a and Table 3).

In sum, we replicate the linear model using mean obser-
vations from our replicate experiment, and extend it to
the use of the example visual feature. The result con-
firms that the visual feature can replace correlation in
this model without loss of precision. The slightly higher
intercept and slope compared to Harrison et al.’s may be
due to fatigue effect [39], since our experimental dura-
tion was longer.

5.5 Linear Model Using Individual Observations
(Kay and Heer)

Next, we validate the use of visual features in the techni-
ques proposed by Kay and Heer [4]. Note that Kay and
Heer used a series of models and techniques: 1) a linear
model using individual observations, 2) a log-linear model
using individual observations, 3) censoring method for
observations without a known value, 4) Bayesian statistics,
and 5) a log-linear model with a random intercept.

A key observation from Kay and Heer is that the
aggregated model does not take into account the non-
constant variance between the individuals [4]. Instead,

Fig. 7. The linear models using mean observations for a) correlation and
b) the visual feature (dist line sd). Error bars are the standard deviation
in aggregation.

TABLE 3
The Results of the Linear Models Using Mean Observations

3. We use R package gamlss [31], [32] to fit all models. The gamlss
procedure fit models by fitting residuals using different residual distri-
butions. This makes it valid to compare AIC for models based on trans-
formed data.
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they started with a linear model based on individuals
observations, which allows to include all individual vari-
ance. It offers a principled way for including outliers, as
each observation is assigned a likelihood, and outliers
are assigned a relatively low weight. Another technique
employed by Kay and Heer is the inclusion of random
effect to improve the generalizability of the model coeffi-
cients. This resolves the correlation between observations
from the same participant.

In this section, we replicate the linear model of correla-
tion based on individual observations (the first model from
Kay and Heer) and extend it to visual features. This linear
model sets a baseline for comparison based on individual
observations and bridges between the model by Rensink
and Baldridge and Harrison et al. and the further models by
Kay and Heer. Following Kay and Heer, we include all indi-
vidual observations in all the models (95 participants � 4
observations per participant = 380 observations).

5.5.1 Modeling

Following Kay and Heer, we first construct a regression
model that incorporates individual observations:

yi ¼ b0 þ b1xi þ b2ai þ b3aixi þ "i; (6)

where y represents JND similar to that of the linear model
using mean observations (Equation (5)), a represents
approach, x represents the stimulus with an error term of ",
and ax is the interaction between the two. According to Kay
and Heer, ai is defined as

ai ¼
�1; if approach is from above

1; if approach is from below;

�

In these equations, i is from 1..n, where n is the number
of individual observations (n ¼ 380), differentiated from the
mean observations used by Rensink and Baldridge and
Harrison et al. where n ¼ 12.

5.5.2 Results

The results of modeling with individual observations using
a linear model are presented in Fig. 8 and Table 4. Specifi-
cally, we have:

(1) Box 1 (f1): we first present the linear model of corre-
lation based on individual observations, which has
similar coefficients with the previous aggregated
model using mean observations (see Fig. 8a, b1 ¼
�0.18, b0 ¼ 0.19 versus b1 ¼ -0.18, b0 ¼ 0.19).

(2) Box 2 (f2): we extend the model to the visual feature
and find a drawback in goodness-of-fitness (R2 ¼ .09
versus .31).

(3) Box 3 (f3): we find a strong linearity between the two
sets of JNDs from correlation and the visual feature
(dist line sd, R2 ¼ .96).

(4) Box 4 (f4): we find a strong linearity between the
visual feature and correlation based on individual
observations (R2 ¼ .99).

(5) Box 5 ! 1’ (f10 ): combining the three equations
above, we derive a new model for correlation.

(6) Box 1’ versus 1: the resulting model from substitu-
tion (b1 ¼�0.18, b0 ¼ 0.20) is very similar to the orig-
inal model of correlation (b1 ¼ �0.18, b0 ¼ 0.19) in
both shape and form (see Fig. 8a).

These results are consistent with Kay andHeer’s findings in
the following ways. First, in the regression diagnostics for the
models of both correlation and the visual feature, the residuals
are not normally distributed (p < .001), with non-zero skew-
ness and kurtosis (see Figs. 8b and 8d). Second, the models
also do not hold the assumption of homoscedasticity for resid-
uals (p < .001). These are two important findings from Kay
andHeer, which leads to a step of further refining themodel.

5.6 Log-Linear Model with a Random Intercept,
Using Individual Observations (Kay and Heer)

Kay and Heer pointed out that, because the linear model vio-
lates the key assumptions of normality and homoscedasticity

Fig. 8. The linear models using individual observations and their regression diagnostics: a) and b) correlation, c) and d) the visual feature
(dist line sd). Error bars are root mean square errors. The detrended Q-Q plots illustrate the deviation from normality and the skewness in residuals,
aligning with the analysis by Kay and Heer.

TABLE 4
The Coefficients, Substitution, R2, and Regression Diagnostics of the Linear Models Using Individual Observations
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in regression analysis, it may result in a biased model and an
overestimated goodness-of-fit. They, therefore, proposed a
log-linear model to transform the data into one that meets the
assumptions for regression analysis. They also incorporated
random effect to account for observations from the same par-
ticipant. The focus of this section is to replicate the log-linear
model with a random intercept, to extend it to the use of the
visual feature (dist line sd), and validate whether the visual
feature can reproduce the log-linear model of correlation pro-
posed byKay andHeer.

5.6.1 Modeling

Following Kay and Heer, the log-linear model has the form:

log ðyiÞ ¼ b0 þ b1xi þ b2ai þ b3aixi þ "i þ Uk; (7)

The log-transformed JND (log ðyÞ) is modeled as a linear
function of the baseline intensity x (i.e., r or v), approach a,
an interaction between them (ax), and an offset (Uk) for each
participant k. The difference is the use of a log transforma-
tion on the individual observations to correct for skewed
residuals and an Uk comprising a treatment factor effect [40]
(see Kay and Heer [4]).

5.6.2 Results

Similar to the previous section, we first replicate the model,
extend it to the visual feature, and derive the substitution
from the visual feature.

(1) Box 1 (f1): Table 5 shows the fit of the log-linear
model to our data (R2 ¼ .79) and the coefficients
(b1 ¼ �2.02, b0 ¼ �1.41), which are similar to those
of Kay and Heer’s (b1 ¼ -2.39, b0 ¼ �1.27, from the
results released online).

(2) Box 2 (f2): we confirm that extending to the visual
feature yields a decent fit (dist line sd, R2 ¼ .71).

(3) Box 3 (f3): we find a favorable fit between the two
sets of log-transformed JNDs (R2 ¼ .99).

(4) Box 4 (f4): the relation between the visual feature
and correlation remains the same (R2 ¼ .99).

(5) Box 5 ! 1’ (f10 ): combining the results above turns
into a new model of correlation (see the last line in
Table 5).

(6) Box 1’ versus 1: the derived correlation model is very
similar to the original model (see Fig. 9, b1 ¼ �2.02,
b0 ¼ �1.41 versus b1 ¼ �2.03, b0 ¼ �1.41).

Similar to Kay and Heer’s results, we find that AIC of the
log-linear model is an improvement over the linear model
(e.g., �1724.39 versus �1213.72). However, we still observe
that the log transformation leaves some skewness in the
residuals, and the residuals are non-normally distributed
(e.g., p < .001), especially for the visual feature.

5.7 Summary and Discussion

Thus far, we have examined three existing modeling
techniques of correlation perception in scatterplots: a lin-
ear model using mean observations, a linear model using
individual observations, and a log-linear model with ran-
dom intercepts to account for individual observations.
For each of these, we have replicated the original model
using our experimental data, extended the model to
include the visual feature, then substituted the visual
feature for correlation. Our analysis indicates that the
use of the visual feature generally performs similarly to
the use of correlation. As a result, we find that models
using visual features can successfully reproduce the orig-
inal model of correlation.

The visual feature that best explains participants’ judg-
ments yields at least the same effectiveness in modeling the
perception of correlation in scatterplots. This supports our
two speculations: 1) the perceptual laws for low-level per-
ception may apply to the perception of correlation because
2) visual features are possible proxies of correlation.

Our demonstration of an interchangeable relationship
between the visual features and correlation is not a
“proof” of that participants in fact use visual features as a

TABLE 5
The Coefficients, Substitution, R2, and Regression Diagnostics of the Log-Linear Models Using Individual Observations

Fig. 9. Log-linear models using individual observations and their regression diagnostics: a) and b) correlation, c) and d) the visual feature
(dist line sd). Error bars are root mean square errors.
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proxy to judge correlations in scatterplots. Instead, this
demonstration provides evidence that the visual features are
possible proxies for correlation. Future perceptual and
cognitive experiments will be necessary to verify this claim.
For example, we observe that adding a random intercept
(in the case of the log-linear model by Kay and Heer) to
allow the inclusion of individual difference enhances the
goodness-of-fit, especially when using the visual feature
in the model. This finding may imply that different partici-
pants utilize different visual features, although the same
people may use the same features across judgments.

6 IMPROVING PERCEPTUAL MODELS USING

POWER TRANSFORMATION

The models explored thus far (Rensink and Baldridge,
Harrison et al., and Kay and Heer), still have room for
improvement. Several issues remain, such as non-normality
in the residuals in the log-linear model and a general need to
improve the overall fit. Inspired by the power functionwidely
used in perceptual psychology, we propose a straightforward
power transformation (instead of a linear or a log-linear
model) to better model the perception of correlation and the
visual feature in scatterplots.

Power functions are commonly used in perceptual psy-
chology for modeling our perception of physical stimuli.
The most well-known use of power functions in this area is
Stevens’ power law, which was introduced as a means to
extendWeber’s law to describe a wider range of stimuli [41].
Specifically, Stevens’ power law states that the subjective
magnitude of sensation is proportional to the intensity of
the stimulus raised to a certain power a. For example, as
reported by Stevens, a is 0.7 for the perception of area of
projected square, where as a is 1.2 for the sensation of light-
ness using the reflectance of gray papers [41].

Power functions have also been used in modeling the
perception of correlation in scatterplots in several existing
studies. For example, Pollack used a square function [7] to
model a relationship between perceived correlation (sensa-
tion) and objective correlation (stimulus); Jennings et al.
proposed a square root function [8]; Cleveland et al. used a
square root function and double-power functions with two
free parameters [9]; Boynton proposed a power function
with one or two free parameters [5].

What is common in all these works is the use of the
power function. However, the data collected in these experi-
ments overwhelmingly come from experiments where par-
ticipants were instructed to directly estimate the correlation
of a given chart. A key difference in the approach that
we adopt from Rensink and Baldridge, as pointed out in
their work, was the use of psychophysical techniques which
mitigate estimation bias and variance by only requiring
participants to indicate which plot appears more correlated.
Such techniques align more with the original experiments
described by Stevens [41].

6.1 Power Transformation and Evaluation Metrics

The power transformation model is generally considered to
be more flexible than a linear or a log-linear model because
of the use of the exponent. We use the power transformation
to transform both JNDs of correlation and the visual feature.

Specifically, we utilize the Box-Cox t distribution, which is
a generalization of the Box-Cox normal distribution [42]
that can model both skewness and kurtosis, and has been
confirmed to surpasses Box-Cox normal distribution [43].
We also choose a power function for the link function of
location (median) [44]. The exponent (denoted as v) in the
link function is chosen based on considerations from both
statistical metrics and perceptual psychology:

(1) Given that the exponent in Stevens’ power law related
to human vision is commonly around 0.3-1.5, we sam-
ple all possible values from [�5, 5] at a step of 0.01.

(2) The classic Box-Cox transformation results in expo-
nents of -0.06 (95 percent CI:[�0.17, 0.05]) and �0.41
(95 percent CI:[�0.57, �0.24]), validating that sam-
pling from [�5, 5] is reasonable.

(3) Steps 1) and 2) yield multiple exponential terms that
lead to a model outperforming the log-linear model,
and we present the one that has the best tradeoff
between the statistical metrics, including R2, AIC [45],
skewness etc.

6.2 Power Transformation with Individual
Observations

The power transformation model has the general form:

yvi ¼ b0 þ b1xi þ b2ai þ b3aixi þ "i þ Uk: (8)

This equation is similar to the linear model and the log-
linear model by Kay and Heer, except the use of yvi instead
of logðyiÞ, where y represents JND. The exponent v indicates
the power term from link function for location, while a
and x represent the approach and the stimulus (i.e., r or v)
respectively, b represents model coefficients, Uk accounts
for random intercept, and " is the error term.

6.3 Results

The results of power transformation for both correlation
and the visual feature (dist line sd) are presented in Table 6.

Compared to the log-linear model, the twomodels appear
similar (see Table 6 and Fig. 10).We find that the transformed
JNDs of correlation and the visual feature can be represented
as linear models (R2 ¼ .99).When substituting the visual fea-
ture into the power transformation model, the visual feature
exactly reproduces the original model of correlation (b1 ¼
�0.26, b0 ¼ 0.66 versus b1 ¼�0.25, b0 ¼ 0.67).

The power model, however, outperforms the log-linear
model in a variety of ways:

(1) The power model shows a better goodness-of-fit
(e.g., R2 ¼ .81 versus R2 ¼ .79) and an improved
AIC (e.g., 703.73 versus 748.32) over the log-linear
model. These indicate that the overall quality of the
model is improved.

(2) The power model also shows an improvement in
regression diagnostics. It has a residual distribution
that is normally distributed compared to the log-lin-
ear model (p ¼ .07 versus p < .001, p ¼ .29 versus
p ¼ .06). The model appears to contain a slight draw-
back in homoscedrasticity over the log-linear model,
but the value is still acceptable and surpasses the
linear model (p ¼ .06 versus p < .001). This model
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generally exhibits less skewness and kurtosis in the
residuals than the log-linear model (skewness: �0.03
versus 0.12, kurtosis: �0.29 versus 0.86).

The power model improves upon the log-linear
model in that it has a higher R2 and improved AIC,
skewness, and kurtosis. In conclusion, in the areas
where the log-linear model had room for improve-
ment, the power model fills these gaps, resulting in a
model that by many measures can be considered a
more faithful representation of the participants’ per-
ception of correlation in scatterplots.

7 DISCUSSION AND CONCLUSION

In this paper, we examine the longstanding hypothesis that
people perceive visual features related to correlation when
judging correlation in scatterplots. Toward this end, we col-
lect 49 visual features, spanning literature in perceptual
psychology to visualization, statistics, and computational
geometry. We analyze them at several levels including both
aggregate and individual judgments and across several
recently proposed mathematical models of behavior (i.e.,
[1], [3], [4]). The results at the individual level indicate that
visual features are more predictive of participants’ judg-
ments than correlation. At the model level, the results of
analyses indicate that the extant models can be successfully
extended to visual features. Finally, drawing inspiration
from decades of perceptual psychology, we move beyond
current models (linear, log-linear) to show that a power
transformation of observed JNDs produces a more precise
model than existing approaches, resulting in better perfor-
mance when using either correlation or the non-trans-
formed visual features.

7.1 Power and Log Transformations

The “power transformation versus log transformation”
debate [46] has spanned a variety of research fields, includ-
ing image enhancement [47] (e.g., Gamma correction) and

biology [48], many of which have suggested that power
transformations are more robust than log transformations
for fitting data [46], and have desirable properties for
explaining the underlying behavior of phenomena.

Given these considerations, the available transformations
should also be evaluated as candidate explanations for the
underlying judgment behavior, viewed through the lens of
perceptual psychology alongside their mathematical proper-
ties. The results in this work indicate that a power trans-
formation better describes the observed data than a log
transformation. Similarly, the log transformation by Kay and
Heer was reportedly chosen on the basis that it addresses
modeling concerns such as skewness [4].

Beyond the intuition that the power transformation is
connected to studies that model perceived stimuli, its math-
ematical inference is via integration. Using our modeling of
correlation perception in scatterplots as an example, the lin-
ear, log transformation, and power transformation can be
written as DI ¼ kðI þ bÞ, logðDIÞ ¼ kðI þ bÞ, and ðDIÞv ¼ k
ðI þ bÞ, respectively. In these equations, I is the magnitude
of the stimulus, and DI is the smallest change resulting in a
unit step in the perception (i.e., JND). On Fechner’s assump-
tion [1], [2], [49], we can infer the perceived stimulus (P )
from these three equations by integrating on both sides
(see Appendix F, available in the online supplemental

material): P ¼ 1
ck logðI þ bÞ þ C, P ¼ � 1

ck e
�kðIþbÞ þ C, and

P ¼ k�a

cð1�aÞ ðI þ bÞ1�a þ C.

The linear model results in a logarithmic function
(Fechner’s law [50]), and this log function has been found to
best describe mean observations of perceived correla-
tion [14]. Our results also show that the basic linear models
using mean observations can capture observed behavior,
and thus can be descriptive and predictive when under-
standing phenomena at the population level.

At the individual level, linear models might not be
able to explain and describe the variance and differences
across people. In this case, transformations might help. A log

Fig. 10. The power transformation models and residual analyses: a) and b) correlation, c) and d) the visual feature (dist line sd). In contrast to the
previous models, the power transformation models have the desirable properties of normal-like and constant-like residuals.

TABLE 6
The Coefficients, Substitution, R2, AIC, and Regression Diagnostics of the Power Transformation Models
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transformation, as we showed above, results in an exponen-
tial function for the perceived stimulus. In other perceptual
studies for visualizations, however, results appear to use
non-exponential functions (e.g., [51], [52]). The log trans-
formation is widely used in biomedicine, psychosocial
research, and physics [53], [54] as phenomena like life
growth, information spread, and radioactive decay are all
modeled at using exponentials.

The power transformation results in a function that
models perceived correlation as a multiplicative factor of
objective correlation, and therefore can be an instance
of Guilford’s [55] and Stevens’ [41] power laws, which is
consistent with literature using power functions to model
the perceived correlation in scatterplots [5], [6], [9], [56] and
beyond [41]. Some literature suggested that Weber’s law
may have been superseded by Stevens’ power law as the
standard modeling for understanding the mapping between
stimulus and perception [57], [58], though debates [59] and
exceptions [60] remain.

When viewed from a statistical standpoint, the use of a
power transformation allows more modeling generality and
precision by adjusting the exponential term. It addresses the
consideration as to whether the model can be generalized to
a wide range of stimuli when choosing a model for a per-
ceptual process. The log transformation, in contrast, can be
viewed as a special case of the power transformation.
Though the quantitative improvements of using the power
transformation model are relatively small compared to the
log transformation models, the power transformation better
describes the underlying perceptual data by providing
both the modeling advantages of the log transformation,
evidenced by our results, with the added benefit of a link
to existing research in perceptual psychology. However,
it should be noted that there may be cases that the two
transformations perform indistinguishably. Our discussion
focuses on transforming the dependent variables, while
other research might find transforming the independent
variables, such as the visual features themselves, yields new
avenues towards understanding the relationships between
people and visualizations.

Finally, while some of our analyses use individual obser-
vations and partially measure individual perception, it may
be worth considering future studies that employ a rigorous
comparison of models (e.g., linear, log-linear, power, expo-
nential) that use observations and judgments from the same
participant across different correlation levels. Such investi-
gations will help us better understand variation in individ-
ual perception and visualization performance.

7.2 Perceptual Science and Visualization

One goal of this paper is to ground recent research efforts in
InfoVis on perceptualmodeling of statistical visualizations in
the concepts and practices of the perceptual science commu-
nity. While the InfoVis community can apply sophisticated
statistical methodologies towards fitting psychophysical
experimental data into models, we argue that we must also
incorporate methodologies and techniques from perceptual
scientists to help understand why the resulting models and
the observed phenomenon occur.

One notable example is that the perception of “Pearson
correlation” is an abstract mathematical concept, has shown

to be modeled using Weber’s law, a simple linear model
used for hundreds of years in psychological research [1],
[3]. In particular, because Weber law’s is generally only
applied to low-level physical stimuli (e.g., sound, weight,
length, etc.), it is surprising that the abstract notion of
“Pearson correlation” falls in the same family of models. If
Rensink and Baldridge and Harrison et al. had used general
model-fitting methods without making the connection to
Weber’s law, it is possible that an important link to prior
psychological research would have been missed.

Our investigation of visual features in this paper seeks to
fill this knowledge gap. Although the result is positive, it is far
from conclusive. For one, we are working under the assump-
tion that the participants use a single visual feature (and the
same feature) to estimate correlation. The results suggest
room for improvement here, as our models using visual fea-
tures performedwell, but not as well as those using the differ-
ence in correlation, which can be considered an amalgam of
visual features. Intuitively, given a difficult correlation judg-
ment participants may switch “strategies” (i.e., the use of dif-
ferent visual features or combinations of features) to make a
final judgment.

This paper focuses on the perception of correlation in
scatterplots, we posit that our experimental and analytical
methods based on perceptual features may extend to the
study of other multivariate visualizations for other perceptual
tasks (e.g., detecting outlier, mean, trend). Quantifying and
modeling such features for commonly used visualizations can
be an important area for future work, as it will enable more
predictive models and shed light on how people perceive
information from visualizations. Recentwork by Rensink sug-
gests that a model of correlation perception based on entropy
is possible (i.e., that people can perceive how “random” a
visualization appears) [14]. These and other interdisciplinary
efforts that cut across both visualization and perceptual psy-
chology can begin to develop theories of visualization [2] that
can serve as the foundation for the next generation of informa-
tion visualization research, design, and practices.

ACKNOWLEDGMENTS

The research is supported in part by DARPA FA8750-17-2-
0107, NSF awards IIS-1452977 and IIS-1162067. We thank all
the anonymous reviewers for their thoughtful feedback. We
thank Megan Van Welie and R. Jordan Crouser for their
help with the manuscript.

REFERENCES

[1] R. A. Rensink and G. Baldridge, “The perception of correlation in
scatterplots,” Comput. Graph. Forum, vol. 29, no. 3, pp. 1203–1210,
2010.

[2] R. A. Rensink, “On the prospects for a science of visualization,” in
Handbook of Human Centric Visualization, W. Huang, Ed. Berlin,
Germany: Springer, 2014, pp. 147–175.

[3] L. Harrison, F. Yang, S. Franconeri, and R. Chang, “Ranking visu-
alizations of correlation using Weber’s law,” IEEE Trans. Vis. Com-
put. Graph., vol. 20, no. 12, pp. 1943–1952, Dec. 2014.

[4] M. Kay and J. Heer, “Beyond Weber’s law: A second look at rank-
ing visualizations of correlation,” IEEE Trans. Vis. Comput. Graph.,
vol. 22, no. 1, pp. 469–478, Jan. 2016.

[5] D. M. Boynton, “The psychophysics of informal covariation
assessment: Perceiving relatedness against a background of dis-
persion,” J. Exp. Psychology: Human Perception Perform., vol. 26,
no. 3, pp. 867–876, 2000.

1486 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 3, MARCH 2019



[6] J. Meyer, M. Taieb, and I. Flascher, “Correlation estimates as per-
ceptual judgments,” J. Exp. Psychology: Appl., vol. 3, no. 1, pp. 3–
20, 1997.

[7] I. Pollack, “Identification of visual correlational scatterplots,”
J. Exp. Psychology, vol. 59, no. 6, pp. 351–360, 1960.

[8] D. Jennings, T. M. Amabile, and L. Ross, “Informal covariation
assessment: Data-based versus theory-based judgments,” in Judg-
ment Under Uncertainty: Heuristics and Biases, New York, NY, USA:
Cambridge Univ. Press, 1982, pp. 211–230.

[9] W. S. Cleveland, P. Diaconis, and R. McGill, “Variables on scatter-
plots look more highly correlated when the scales are increased,”
Sci., vol. 216, no. 4550, pp. 1138–1141, 1982.

[10] J. Meyer and D. Shinar, “Estimating correlations from
scatterplots,” Human Factors: The J. Human Factors Ergonom. Soc.,
vol. 34, no. 3, pp. 335–349, 1992.

[11] T. W. Lauer and G. V. Post, “Density in scatterplots and the esti-
mation of correlation,” Behaviour Inf. Technol., vol. 8, no. 3,
pp. 235–244, 1989.

[12] T. N. Cornsweet, “The staircase-method in psychophysics,” Amer.
J. Psychology, vol. 75, no. 3, pp. 485–491, 1962.

[13] W. W. Daniel, “Applied nonparametric statistics,” Wadsworth
Pub Co, 1989.

[14] R. A. Rensink, “The nature of correlation perception in
scatterplots,” Psychonomic Bulletin Rev., vol. 24, pp. 776–797, 2017.

[15] P. Schubert and M. Kirchner, “Ellipse area calculations and their
applicability in posturography,” Gait Posture, vol. 39, no. 1,
pp. 518–522, 2014.

[16] L. Wilkinson, A. Anand, and R. Grossman, “Graph-theoretic
scagnostics,” in Proc. IEEE Symp. Inf. Vis., 2005, pp. 157–164.

[17] H.-P. Kriegel, P. Kr€oger, J. Sander, and A. Zimek, “Density-based
clustering,”Wiley Interdisciplinary Reviews: Data Mining Know. Dis-
covery, vol. 1, no. 3, pp. 231–240, 2011.

[18] M. De Berg, M. van Kreveld, M. Overmars, and O. C. Schwarz-
kopf, Comput. Geometry. Berlin, Germany: Springer, 2000.

[19] W. S. Cleveland and R. McGill, “Graphical perception: Theory,
experimentation, and application to the development of graphical
methods,” J. Amer. Statistical Assoc., vol. 79, no. 387, pp. 531–554,
1984.

[20] G. A. Seber and A. J. Lee, Linear Regression Analysis. Hoboken, NJ,
USA: Wiley, 2012, vol. 936.

[21] S. J. Press and S. Wilson, “Choosing between logistic regression
and discriminant analysis,” J. Amer. Statistical Assoc., vol. 73,
no. 364, pp. 699–705, 1978.

[22] J. C. Stoltzfus, “Logistic regression: A brief primer,” Academic
Emergency Med., vol. 18, no. 10, pp. 1099–1104, 2011.

[23] “Interpreting logistic regression coefficients,” in Logistic Regres-
sion, 0th ed., F. C. Pampel, Ed., Newbury Park, CA, USA: SAGE
Publications, 2000, pp. 19–40.

[24] N. Scotia, “Explaining odds ratios,” J. Can. Academy Child Adoles-
cent Psychiatry, vol. 19, no. 3, pp. 227–229, 2010.

[25] W. H. Greene, Econometric Analysis, Noida, Uttar Pradesh, India:
Pearson Education India, 2003.

[26] R. A. Armstrong, “When to use the Bonferroni correction,” Oph-
thalmic Physiological Opt., vol. 34, no. 5, pp. 502–508, 2014.

[27] S. Eade, “The effect of magnitude of criterion validity and positive
cue validity upon human inference behavior,” Master’s thesis,
Ohio State Univ., Columbus, OH, 1967.

[28] D. M. Lane, C. A. Anderson, and K. L. Kellam, “Judging the relat-
edness of variables: The psychophysics of covariation detection,”
J. Exp. Psychology: Human Perception Perform., vol. 11, no. 5,
pp. 640–649, 1985.

[29] E.H.Weber,DePulsu, Resorptione, Auditu Et Tactu: Annotationes Ana-
tomicae Et Physiologicae, Auctore. Prostat apudC.F. Koehler, 1834.

[30] E. H. Weber, H. E. Ross, and D. J. Murray, E. H. Weber On The Tac-
tile Senses. London, U.K.: Psychology Press, 1996.

[31] R. Rigby and D. Stasinopoulos, A Flexible Regression Approach Using
GAMLSS in R., Lancaster, U.K.: University of Lancaster, 2010.

[32] D. M. Stasinopoulos, R. A. Rigby, “Generalized additive models
for location scale and shape (GAMLSS) in R,” J. Statistical Softw.,
vol. 23, no. 7, pp. 1–46, 2007.

[33] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for nor-
mality (complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–
611, 1965.

[34] I. B.Weiner, J. A. Schinka, andW. F. Velicer,Handbook of Psychology,
ResearchMethods in Psychology. Hoboken, NJ, USA:Wiley, 2003.

[35] M. B. Brown andA. B. Forsythe, “Robust tests for the equality of var-
iances,” J. Amer. Statistical Assoc., vol. 69, no. 346, pp. 364–367, 1974.

[36] S. van Buuren and M. Fredriks, “Worm plot: A simple diagnostic
device for modelling growth reference curves,” Statist. Med.,
vol. 20, no. 8, pp. 1259–1277, 2001.

[37] D. C. Howell, “Median absolute deviation,” in Wiley StatsRef: Sta-
tistics Reference Online. Hoboken, NJ, USA: Wiley, 2014.

[38] W. D. Dupont andW. D. Plummer, “Power and sample size calcu-
lations for studies involving linear regression,” Controlled Clinical
Trials, vol. 19, no. 6, pp. 589–601, 1998.

[39] J. Liu, J. R. Allspach, M. Feigenbaum, H.-J. Oh, and N. Burton,
“A study of fatigue effects from the new SAT,” ETS Res. Rep.
Series, vol. 2004, no. 2, pp. i–13, 2004.

[40] M. D. Stasinopoulos, R. A. Rigby, G. Z. Heller, V. Voudouris, and
F. De Bastiani, Flexible Regression and Smoothing: Using GAMLSS in
R. Boca Raton, FL, USA: CRC Press, 2017.

[41] S. S. Stevens, “On the psychophysical law,” Psychological Rev.,
vol. 64, no. 3, pp. 153–181, 1957.

[42] G. E. Box andD. R. Cox, “An analysis of transformations,” J. Roy. Sta-
tistical Soc.: Series B (Methodological), vol. 26, no. 2, pp. 211–252, 1964.

[43] R. A. Rigby and D. M. Stasinopoulos, “Using the box-cox t distri-
bution in GAMLSS to model skewness and kurtosis,” Statistical
Modelling, vol. 6, no. 3, pp. 209–229, 2006.

[44] J. A. Nelder and R. W. M. Wedderburn, “Generalized linear mod-
els,” J. Roy. Statistical Soc.: Series A, vol. 135, no. 3, pp. 370–384, 1972.

[45] R. A. Rigby and D. M. Stasinopoulos, “Generalized additive mod-
els for location, scale and shape,” J. Roy. Statistical Soc.: Series C,
vol. 54, no. 3, pp. 507–554, 2005.

[46] M. Mitzenmacher, “A brief history of generative models for
power law and lognormal distributions,” Internet Math., vol. 1,
no. 2, pp. 226–251, 2004.

[47] R. Maini and H. Aggarwal, “A comprehensive review of image
enhancement techniques,” J. Comput., vol. 2, no. 3, 2010.

[48] X. Xiao, E. P.White,M. B. Hooten, and S. L. Durham, “On the use of
log-transformation versus nonlinear regression for analyzing bio-
logical power laws,” Ecology, vol. 92, no. 10, pp. 1887–1894, 2011.

[49] E. B. Goldstein, Sensation and Perception. Pacific Grove, CA, USA:
Thomson Brooks/Cole Publishing Co, 1996.

[50] G. Fechner, Elements of Psychophysics. Austin, TX, USA: Holt, Rine-
hart and Winston, 1966.
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