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Abstract—Many visualizations, including word clouds, cartographic labels, and word trees, encode data within the sizes of fonts. While

font size can be an intuitive dimension for the viewer, using it as an encoding can introduce factors that may bias the perception of the

underlying values. Viewers might conflate the size of a word’s font with a word’s length, the number of letters it contains, or with the

larger or smaller heights of particular characters (‘o’ versus ‘p’ versus ‘b’). We present a collection of empirical studies showing that

such factors—which are irrelevant to the encoded values—can indeed influence comparative judgements of font size, though less than

conventional wisdom might suggest. We highlight the largest potential biases, and describe a strategy to mitigate them.

Index Terms—Text and document data, cognitive and perceptual skill, quantitative evaluation
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1 INTRODUCTION

WITH the growing amount of textual data available to
researchers, methods of visualizing such data are of

increasing importance. Text visualizations support analysts
in many tasks, including forming a gist of a collection of
documents, seeing temporal trends, and finding important
documents to read in detail. One common method for
encoding data using text rendering is to vary the font size.
The importance and impact of font size as an encoding can
be seen in a wide variety of contexts, from word cloud
applications [1], [2], [3], to cartographic labeling [4], [5], to a
number of different hierarchical visualization tools [6], [7].

However, there has been some question of how effective
people are at judging font size encodings [8]. Such concerns
arise in part because there are many ways in which words
vary with one another outside of font size. In particular,
two words with the same font size can vary tremendously
in their shape. Longer words with more letters take up more
area on the screen. The glyphs for some letters are inher-
ently taller or wider than others. Kerning and tracking can
create diverse spacing between characters. Differences in
font would exacerbate these problems, but even the same
font can be rendered differently depending on the platform.

Other potential factors that could skew perception include
color, font weight, and a word’s semantic meaning [1], [3],
[9], [10], [11].

We are interested in better understanding the ways in
which these factors may bias font size perception. Such an
understanding is important for knowing how much we can
trust interpretations of data based on font size encodings.
Measuring potential biases can also give us a way of finding
limits on the kinds of tasks for which font size can be
used—and seeing whether or not there are ways in which
those limits can be stretched. Additionally, we can begin to
tease apart the mechanisms that create those limits in a
way that may inform the use of similar methods in different
contexts.

In this paper, we focus specifically on the degree to
which a word’s shape can affect impressions of its font size.
We present the results from a series of crowdsourced
experiments in which participants were asked to judge font
size within word cloud visualizations. In each experiment,
we varied the words along one of the axes described above
(see Fig. 1). We found that, in general, performance was
high enough to call into question some existing notions of
the limits of the encoding. However, there were conditions
in which participants’ perception of font size was biased. In
particular, in cases where some physical attribute of the
word, such as width, disagreed with its font size, accuracy
dropped dramatically for many participants.

Fortunately, this effect can be corrected for. We describe
a proof-of-concept method for debiasing font size encodings
that uses colored tags sized proportionally to the data. We
empirically show that our debiasing efforts improve perfor-
mance even in the most pathological cases.

The main contributions of this paper are:

� An evaluation of user accuracy when making com-
parative judgements of font size encoding within a
visualization, indicating that users may be better at
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making such judgements than conventional wisdom
would suggest.

� A description of situations in which these judge-
ments can be biased by attributes of the words
being shown.

� A proof-of-concept method for debiasing visual-
izations in these situations using padded bound-
ing boxes.

2 RELATED WORK

Font size has been used to encode data across a number of
visualization types, and to support a variety of tasks. Inves-
tigations of font size encoding have been largely focused on
word clouds and their overall effectiveness, whereas our
work focuses on the perceptual task of comparing word
sizes under a variety of real-world conditions.

The most familiar visualizations using font size encoding
are tag clouds, more generally called word clouds. Word
clouds represent variables of interest (such as popularity)
in the visual appearance of the keywords themselves—using
text properties such as font size, weight, or color [9]. One
particularly popular example of word clouds is Wordle, an
online tool for creating word clouds that encode word fre-
quency information using font size [3]. Taking a cue from the
popularity ofword clouds, theWord Tree,which is an interac-
tive form of the keyword-in-context technique, uses font size
to represent the number of times aword or phrase appears [7].

Font size has also been used to encode data in carto-
graphic visualizations, in typographic and knowledgemaps.
A typographic map represents streets using textual labels
for street names while encoding spatial data such as traffic
density, crime rate, or demographic data into the font
size [4], [12]. In contrast, Skupin uses font size to indicate
semantic clustering, adding a semantic hierarchy to his
knowledgemaps [5].

Rivadeneira et al. performed two experiments on word
cloud effectiveness [11]. In the first, the effects of font size,
location, and proximity to the largest word were investi-
gated. The experiment results showed an effect of font size
and position (upper-left quadrant) on recall; meanwhile,
proximity showed no effect. In the second experiment, the
authors evaluated impression formation and memory by
varying font size and layout (e.g., alphabetical sorting, fre-
quency sorting) of words in the cloud. Font size had a sig-
nificant effect on recognition, but layout did not. However,
the authors found that layout affected the accuracy of

impression formation. From this evaluation, the authors
concluded that word clouds are helpful for people to get a
high-level understanding of the data, and for casual explo-
ration without a specific target or goal in mind.

A study by Bateman et al. investigated the visual influ-
ence of word cloud visual properties (font size, tag area, tag
width, font weight, number of characters, color, intensity
and number of pixels) for the task of selecting the 10 “most
important tags” [9]. Participants were asked to find the
most attention-grabbing word out of a word cloud. They
report that the features exerting the greatest visual influence
on word clouds were font size, font weight, saturation and
color. However, the authors did not look at user ability to
accurately read data encoded with these features.

A study by Lohmann et al. [10] supports Bateman
et al. [9] and Rivadeneira et al. [11] by reporting that words
with larger font sizes attract more attention and are easier to
find. However, none of these studies identify the magnitude
of this effect for real-world use, or strategies for mitigating
the biases. This knowledge is relevant because when encod-
ing data into font size [4], [5], [7], [13] there is expectation
from designers that people can perceive the difference in
size to correctly understand the encoded data.

3 EXPERIMENTAL TASK

There are many different documented tasks for which font
size encodings have been used. These tasks include:

� Gist-forming: discerning the general meaning of a col-
lection of words, taking their relative importance as
coded by their font size into account [1], [11], [14].

� Summary comparison: making sense of juxtaposed sets
of words from different sources [15], [16].

� Word search: finding a particular word in a visualiza-
tion [9], [10], [11].

� Retention: being able to recall a word from a particu-
lar visualization, and to distinguish it from others
[11].

� Value reading: reading a specific numerical value
associated with text [13].

� Order reading: comparing words to determine rela-
tive value [9], [11].

It has been shown that font size encodings are not the
proper design choice for a number of these tasks, most nota-
bly searching and retention, where simple ordering can be
much more effective [11]. In general, font size encodings are
more frequently used for subjective, high-level tasks like

Fig. 1. To test whether attributes of words can affect perception of their font size, we highlighted words within word clouds and asked participants to
choose the larger font. On the left, “zoo” has the larger font, but the length of “moreover” can bias participants toward choosing it as larger. On the
right, “source” has the larger font, but the taller ascending and descending parts of “begged” can bias participants toward choosing it as larger.
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gist-forming. However, it is difficult to measure perceptual
limitations with these tasks. For this study, we were not
interested in measuring participants’ cognitive ability to
draw connections between groups of words, but rather in
better understanding their perceptual abilities.

As such, in selecting a task for our experiments, we chose
one that we believed would isolate the primitive sub-task of
discerning information represented in font size. Specifically,
we focused on a simple comparison task.Wewould highlight
two words within a visualization containing words of differ-
ent sizes and ask subjects to choose the one with the larger
font size. While value-level accuracy in judging font size
seems unnecessary for many high-level interpretations,
the ability to make accurate relative judgements of repre-
sented data is important. Unless users can reliably discern
that words with higher values are bigger than those with
lower values, the relationships between data associated
with these words will be distorted or lost. We believe that
decently accurate perception of relative size is a prerequi-
site even for such high-level tasks as gist-forming and
summary comparison, in addition to the more obvious
ones of order reading and value reading. Therefore,
though users in the wild are rarely faced with a single
pairwise comparison, we believed performance at this
task would help us measure the ability to perform higher
level tasks that rely on the same perceptual abilities.

There were other tasks that we considered, as well. One
solution might have been to ask participants to make an
absolute judgment of font size (e.g., 1.5 mm), or to compare
to a memorized baseline size (e.g., bigger than baseline).
Although such tasks are simple, their detachment from the
context of real-world tasks might have lead to idiosyncratic
strategies, such as focusing attention on the height of a sin-
gle letter instead making a holistic judgement about a whole
word. At the other extreme, another solution might have
been to ask which word in an entire cloud has the biggest
font, while systematically manipulating the distribution of
font sizes within that cloud. However, this task presents
many degrees of freedom that make precise measurement
more difficult. For example, it is not clear whether we
should measure precision as the difference between the big-
gest font versus the next biggest, of versus the algebraic or
geometric mean of the distribution, or versus some other
property of the distribution [17], [18], [19]. We chose to use
the pairwise comparison task in most of our experiments
for the greater control it offered us. After having explored
perceptual biases in this task, however, we still wanted to
be sure that what we had found was extensible to more
real-world situations, and so we ran a set of experiments
using the pick-the-biggest-word task, which showed similar
results (see Section 7).

4 GENERAL EXPERIMENTAL DESIGN

As discussed in Section 3, we focused on comparative judge-
ments of size rather than exact ones. In particular, we focused
on the use of word clouds. Not only are these one of the most
commonmediums for font size encodings, but they also pres-
ent a challenging context for reading values, given the dense
proximity of distracting words and the frequent lack of align-
ment to any shared baseline for any pair ofwords.

4.1 Task Setup and Measures

Participants were first given instructions on the task, and read
a tutorial indicating the difference between a word’s font size
and the area it took up on the screen. Participants were
instructed to complete the tasks as accurately as possible.

Across multiple experiments, we gave participants the
following task with different stimuli: Upon being shown a
word cloud in which two words were highlighted using
a darker gray, participants were asked to click on the
highlighted word that had been given the larger font size.
We were sure to fully explain the distinction between font
size and the general footprint of a word on the screen. While
others have observed instances of users misinterpreting the
meaning of font size encodings [3], we were concerned pri-
marily with perceptual abilities, and so did not want there
to be any confusion for participants.

For each task, we recorded which word the participant
clicked, as well as the time it took. We measured time
only to test for fatigue effects (were tasks getting slower
over time, or was performance decreasing)—our primary
measure was accuracy. We used analyses of variance
(ANOVAs) to test for differences among participant accura-
cies across conditions. Upon clicking a word, the participant
was immediately presented with the next trial.

4.2 Factor Agreement

In each experiment, we tested a potentially biasing word
factor to see if it affected the perception of font size. These
factors were features of the words that vary based on the
contents of the words themselves, such as word length, rather
than attributes of the font that could feasibly be controlled
across the entire visualization. To check for bias of a factor,
we employed a method we have called factor agreement.

Factor agreement indicates whether the difference in the
factor in question reinforces or opposes the difference in font
size (see Fig. 2). For example, if the word within a given
pair with the larger font size also contains more letters, then
we would say that word length agrees with font size. How-
ever, if the word with the larger font size contains fewer let-
ters, we would say word length disagrees with font size. If
both words are the same length, then the word length factor
is neutral. It is not necessarily the case that any given factor’s
agreement or disagreement will affect a user’s perception of
font size, but if they do have an effect, we would expect
user accuracy to decrease in situations of disagreement.

4.3 Stimuli

Stimuli for these experiments were all generated within a
web browser. For early experiments, we created our own
clouds using the D3 visualization library [20]. In later
experiments, to create more realistic scenarios, we used
jQCloud [21], a word cloud library that packs words more
densely using a spiral layout. With the exception of Experi-
ment HEIGHT3, in which we explicitly decided to test a
sans serif font (see Table 1), we used Times New Roman for
all of our stimuli.

The words used in each experiment were either English
words or “pseudowords” (see Table 1). Pseudowords were
constrained strings of random characters we created for
greater control over the character glyphs being used and to
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factor out any semanticweight. Precise characteristics of these
pseudowords varied between experiments (see Section 5).
When building word clouds with English words, we drew

from the Corpus of Contemporary American English
(COCA) [22]. We built a database that allowed us to query for
wordswith specific attributes (e.g., length).

TABLE 1
An Overview of the Experiments We Ran for This Study

Fig. 2. In this figure, we show examples of the different conditions of factor agreement (see Section 4.2) for the three main factors of word shape that
we tested: Word length, word height, and word width. For height, we were concerned with the use of tall and short characters, rather than height dif-
ferences resulting from font size. Similarly, for word width, our primary concern was not the final width of the word in the stimulus, but rather the raw
width—its width before any changes in font size had been applied. While “litter” is wider than “fillet” in the above figure, they are the same width when
written in the same font size.
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The two target words between which participants had to
choose varied in their font sizes and attributes from experi-
ment to experiment. They were also joined by 40 distractor
words in each stimulus, whose sizes were distributed across
a normal distribution. After some calibration through pilot
studies, we kept the difference in font size between the two
target words relatively small. Accuracy was high enough in
these conditions that testing larger differences was deemed
unnecessary.

One issue that came up during experimentation was how
different browsers perform subpixel-rendering. For non-
integer font sizes (e.g., 12.5px), modern browsers sometimes
use different rendering methods that can result in partici-
pants with different machines viewing slightly different
sizes. However, as a between-subjects factor, browser differ-
ences should not affect the within-subjects factors that make
up most of the factors in our experiments. Additionally,
the experiments we chose to report in the main body of the
paper all used integer-value font sizes. However, it is worth
noting that some of the between-subjects effects described
in the supplemental materials, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TVCG.2017.2723397, may
be influenced by cross-browser differences.

4.4 Participants

Over 12 experiments, we recruited 301 participants using
Amazon’s Mechanical Turk framework, restricted to native
English speakers residing in North America with at least a 95
percent approval rating. These participants ranged in age
from 18 to 65 (with a mean of 33) and were made up of 172
males and 129 females. We paid participants either $1.00 or
$2.00 for their time, depending on the number of stimuli with
whichwe presented them (which varied from 56 to 150).

It is worth noting that by using a crowdsourced frame-
work, we sacrifice control over a number of environmental
factors that could affect a participant’s perception. These
include browser differences (as discussed above), along
with things like viewing distance, lighting, etc. Such factors
may have influenced differences between participants, and
may be worth investigating in future in-person studies.
However, we believe we can rely on them being relatively
consistent for individual participants, and therefore they
should not affect the reported within-subjects factors.

To account for the varying levels of engagement
often seen in participation in online studies, we followed
acknowledged best practices to improve the reliability of
our experimental data, including randomizing questions
and manually checking for “click-through” behavior [23],
[24]. Within each session, we also included “validation stim-
uli” with font size differences of a full 10 pixels. These vali-
dation stimuli were used as engagement checks to verify
that participants had properly understood the instructions
and were giving earnest effort. These questions were not
considered in further analysis.

5 EXPLORING BIASING FACTORS

Over the course of our explorations, we ran over a dozen
experiments involving hundreds of participants on
Amazon’s Mechanical Turk. Rather than describe the results

for every experiment in detail, we have organized the main
results and takeaways from each experiment into Tables 1
and 2 and will discuss a subset of them in greater depth in
this section. The remaining experiments are described in
full in the supplemental materials, available online. We
have structured the experiments by the main factors that we
tested for bias: word length, character height, and word
width (shown in Fig. 4).

5.1 Word Length

The first attribute we tested was word length: the number of
characters contained within a word. Longer words take up
more space, and have a larger area than shorter words of the
same font size, and even some shorter words with larger
font sizes. We predicted that these differences in area could
interfere with the ability to perceptually distinguish words
by pure font size alone.

We ran four total experiments using word length as a test
factor. In each one, we observed a significant effect in which
participant accuracy went down when word length dis-
agreed with font size. The details for these experiments can
be found in Tables 1 and 2, as well as the supplemental
materials, available online. We will describe two of the most
important experiments here.

5.1.1 Experiment LEN1: Word Length Biases

Perception of Font Size

For our first experiment on word length, we presented par-
ticipants with word clouds of our own creation as described
in Section 4.3 (see Fig. 3). To afford greater control in stimu-
lus generation, we used words of random characters,
excluding characters with ascenders or descenders (e.g., “h”
or “g”—see Fig. 4) as well as characters of abnormal width
(e.g., “w” or “i”). We enforced a minimum distance between
the two highlighted words, and ensured that they shared no
common horizontal or vertical baselines that would aid in
comparison.

We tested two main factors: font size and word length.
Both were examined using within-subject comparisons.
Font size for the first target word was either 20, 21, or 22 px,
while font size for the second word was either 20 or 22 px.
Length for both target words alternated between 5 charac-
ters and 8 characters. The full combination of these factors
created 24 conditions, of which 16 had a “correct answer”
(i.e., one of the words had a larger font size), and 8 of which
did not (i.e., the words were the same font size). This
allowed us to observe both instances of factor agreement
and disagreement, as well as see which way people leaned
at the extreme marginal case where the sizes were equal.

We tested 31 participants, each of whom saw 150 stimuli
(6 per each of the 24 conditions described above, as well as
6 engagement tests). While this initially seemed like a large
number of stimuli, we saw no fatigue effects in any of our
studies. Average time to completion was 5.8 minutes, and
the comments we received from participants were positive.
We analyzed answers to questions with a correct answer
and without a correct answer separately.

For data where there was a correct answer, we calculated
the font size difference (1 or 2 px) and word length agree-
ment (“agree,” “neutral,” or “disagree”) for each stimulus.
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http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2723397
http://doi.ieeecomputersociety.org/10.1109/TVCG.2017.2723397


We then ran a two-way analysis of variance (ANOVA) to
test for the effect of the font size difference and word length
agreement. We saw main effects for both font size difference
(Fð1; 150Þ ¼ 59:21, p < 0:0001) and word length agreement
(Fð2; 150Þ ¼ 14:91, p < 0:0001). Specifically, participant per-
formance decreased when the difference in word length dis-
agreed with the difference in font size, as well as when the
difference in font size was smaller (see Fig. 5). A post hoc
test using Tukey’s HSD showed that the “disagree” condi-
tion was significantly different from both the “neutral” and
“agree” condition, though the latter two were not statisti-
cally distinguishable from one another.

For data where there was no correct answer, we tested to
see if the rate at which participants picked the longer of the
two words was significantly different from chance. Specifi-
cally, we calculated the rate at which each participant picked
the longer of the two words when the font sizes were the
same (M ¼ 0:59, SD ¼ 0:17) and ran a two-tailed, paired

Student’s t-test to compare these values against an equally
sized collection of values of 50 percent. We found that partic-
ipants were significantly more likely to pick the longer of
the two words (tð30Þ ¼ 2:99, p ¼ 0:005), indicating the same
direction of bias as seenwith the data with correct answers.

5.1.2 Experiment LEN4: Biases Still Present with Full

English Words

For this experiment, we wanted to test whether the effects
that we had seen using “fake” words and our relatively
sparse word clouds would still be present in a more realistic
setting. Specifically, rather than generating random strings
of characters for words, we used words drawn from the
COCA [22]. We also switched from our own word cloud
implementation (Fig. 3) to a modified version of a com-
monly used library called jQCloud [21] (Fig. 7). These
clouds packed words more densely by using the spiral

TABLE 2
An Overview of the Statistical Tests We Ran for This Study
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positioning layout. The jQCloud library also allowed us to
easily modify the aesthetics of the clouds through CSS, cre-
ating images more closely resembling the types of word
clouds participants might be familiar with seeing in other
contexts, such as Wordles [3].

Our factors were once again font size and word length,
each a within-subject factor by our design. We held the first
target word at a font size of 20 px while the second word’s
font size was either 21, 22, 23, or 24 px. The word length of
each target word alternated between 5 and 8 characters. All
words were restricted to characters that contained no
ascenders or descenders to avoid any effects resulting from
height. The full combination of these factor levels resulted
in 16 combinations—each, in this case, with an explicitly
correct choice.

We tested 20 participants, each of whom saw 102 stimuli
(6 per each of the 16 conditions, plus an additional 6 engage-
ment tests). After calculating the font size difference and
word length agreement for each stimulus, we ran a two-
way ANOVA to test for the effect of these two metrics.
Once again, we saw main effects for both font size differ-
ence (Fð3; 269Þ ¼ 7:84, p < 0:0001) and word length agree-
ment (Fð2; 269Þ ¼ 14:32, p < 0:0001), indicating lower
accuracy in instances of word length disagreement at close
font sizes (see Fig. 6). Post hoc tests with Tukey’s HSD

identify the “disagree” condition and the closest font size
difference as the main departures from the rest of the condi-
tions. The lack of difference between the higher-scoring con-
ditions may be the result of ceiling effects, as accuracy was
very high across the board.

5.1.3 Discussion

In these experiments, we see a very consistent bias towards
longer words. Word length, it appears, does affect user per-
ception of font size. However, accuracies across both experi-
ments were higher than we had been anticipating. With
mean accuracies consistently near or above 90 percent, par-
ticipants seemed surprisingly good at making these com-
parisons. These high accuracies may have created a ceiling
effect, which could account for the lack of distinction
between the “agree” and “neutral” conditions in post hoc
tests. Dips in accuracy, while consistent, happened primar-
ily at very close font sizes, but even then participants did
notably better than chance. This may be cause to trust user
perceptions of font size encodings. However, the number of
letters is just one of many features that factors into the diver-
sity of shapes words can make.

5.2 Word Height

The next potentially biasing feature of a word that we tested
was a word’s height. Specifically, there are some characters
in the basic Latin alphabet that are taller than others due to
the presence of ascenders and descenders in their glyphs.
Ascenders—found for example in the letters “h” and “k”—
are marks that reach above a font’s x-height, while
descenders—as in “g” and “y”—extend below a font’s base-
line (see Fig. 4). Given that height is perhaps the easiest way
to tell font sizes apart when comparing words of varying
lengths, we wanted to see whether the presence or lack of
such characters would adversely affect user judgement.

Fig. 3. For many of our experiments, we used word clouds that we built
using the D3 visualization library [20]. These clouds dispersed words
randomly throughout the two-dimensional space, restricted only by
avoiding collisions with the borders and other words. Words were either
drawn from the English words within COCA [22] or pseudowords created
using random characters (as shown here).

Fig. 4. We looked for biasing effects on font size perception for three
main factors of word shape (shown here in blue): Word length (Section
5.1), word height (Section 5.2), and word width (Section 5.3). For our
experiments on height, words were broken down into two categories:
“tall” words containing both ascenders and descenders, and “short”
words whose height was contained between the font’s baseline and
x-height.

Fig. 5. This table shows the average participant accuracy for each com-
bination of factors for experiment LEN1 (Section 5.1.1). A two-way
ANOVA showed significant main effects for both size difference and
length agreement. A post hoc Tukey’s HSD test showed that the
“disagree” condition (i.e., when the longer of the two words had the
smaller font size) was significantly different from the “agree” and
“neutral” cases, though the latter two were not distinguishable from one
another.

Fig. 6. This table shows the average participant accuracy for each com-
bination of factors for experiment LEN4 (Section 5.1.2), in which we
looked for a bias of length agreement within a more realistic collection of
word clouds. After a two-way ANOVA showed significant main effects for
both length agreement and font size difference, post hoc tests showed
that the “disagree” condition and the closest font size difference were
the real departures from the rest of the conditions.
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We ran five experiments investigating this possibility,
and saw a significant bias for character height in each of
them (see Table 1). We will again discuss the most impor-
tant of these experiments here and relegate the others to the
supplemental materials, available online.

5.2.1 Experiment HEIGHT1: Character Heights Bias

Perception of Font Size

For our first experiment investigating the effect of character
height, we again used words of random characters to give
us fine-tuned control over the characters present. We
defined two types of “fake” words: tall and short. Short
words were generated using only characters without
ascenders and descenders (e.g., “a” or “c”) and excluding
characters of abnormal width (e.g., “w” or “i”). For tall
words, we used the vowels “a”, “e”, “o” and “u” and added
characters with ascenders and descenders, again excluding
tall characters with abnormal width (e.g., “f”, “j”, “l”). Short
words are naturally rectangular since all of their characters
share the same height, but the ascenders and descenders in
tall words unbalance this rectangular shape. In order to bal-
ance the tall words’ shapes, we positioned tall characters
both in the beginning and end of the word making sure that
if a word started with an ascender, it would end with a
descender and vice-versa. Each tall word was made up of 8
characters: 3 short characters and 5 tall characters.

We used precisely the same experimental setup as in
Section 5.1.1, with the factor of word length exchanged for
word height: the presence or absence of ascending and
descending characters. This meant that the first target word
again varied between sizes of 20, 21, and 22 px while the
second word varied between 20 and 22 px as both words
alternated back and forth between the tall and short words.
Of the 24 conditions created by combining these factors, 16
had a difference of font size (and therefore a “correct”
answer) while 8 did not. We analyzed the data for stimuli
with a correct answer and stimuli without one separately.

For data where there was a correct answer, we calculated
the font size difference (1 or 2 px) and word height agree-
ment (“agree,” “neutral,” or “disagree”) for each stimulus.
We then ran a two-way ANOVA to look for effects of
these metrics on participant accuracy. We saw significant
main effects for both height agreement (Fð2; 155Þ ¼ 71:22,
p < 0:0001) and font size difference (Fð1; 155Þ ¼ 55:31,
p < 0:0001). These effects went in the same direction as

seen in Section 5.1 with word length: accuracy dropped
when character height disagreed with font size and when the
font sizes were particularly close (see Fig. 8). Post hoc tests
with Tukey’s HSD showed all pairwise combinations of
conditions to be statistically significant.

For data without a correct answer, we calculated the rate
at which each participant picked the tall word when pre-
sented with two words of the same font size (M ¼ 0:67,
SD ¼ 0:07) and compared these values to a collection of
50 percent values with a two-tailed, paired Student’s t-test.
We saw that participants chose the taller of the two words
at a significantly higher rate than chance (tð31Þ ¼ 12:91,
p < 0:0001).

5.2.2 Discussion

Like word length, character height seems to create a consis-
tent bias on participant perception of font size. In fact, the
bias for character height seems to be more pronounced,
with accuracy in the worst cases dropping to levels not
much better than chance (see Table 1). However, instances
of these height differences are relatively rare in English. The
list of words we used from COCA [22] has in total 25,859 eli-
gible words after removing duplicates and words contain-
ing numerals and punctuation. Of these, only 870 fit our
definition of “short” words—approximately 3.3 percent of
eligible words. As such, the extreme comparison of tall to
short words would likely not happen often in the wild.
However, there are less extreme comparisons—words con-
taining only a few ascenders or descenders, words contain-
ing only one or the other, etc.—that may be more common
and still exhibit this bias.

5.3 Word Width

After running our tests on word height, we decided to look
for the the effect of a different factor: word width. In our
height experiments, we held length constant and attempted
to control for width by excluding characters of abnormally
small or large width (as described in Section 5.2.1). How-
ever, there were still small differences in glyph widths even
outside of those characters, which created variance in width
from word to word, even within the same length conditions.
In a post hoc test, we computed a width agreement metric
for each stimulus from experiment HEIGHT2 indicating
whether the difference in width went in the same direction
as the difference in font size. It was only for stimuli with the
smallest font size difference that we saw any width dis-
agreement, given that we had attempted to make widths
neutral. We ran a two-way ANOVA looking for an effect of
width agreement, specifically on the stimuli in the closest

Fig. 8. This table shows the average participant accuracy for each com-
bination of experimental factors for experiment HEIGHT1 (Section
5.2.1). A two-way ANOVA showed main effects for both word height
agreement and font size difference. Post hoc analysis using Tukey’s
HSD showed that all experimental conditions were statistically distin-
guishable from one another. Most notably, accuracy is lowest for the
“disagree” condition with the closest difference in font size.

Fig. 7. To create a more realistic context for experiment LEN4 (see
Section 5.1.2), we used a modified version of the jQCloud library to create
stimuli [21]. These word clouds were more densely packed, more closely
resembling what participantsmight be used to seeing in other settings.
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font difference case. The effect we saw was significant
(Fð2; 38Þ ¼ 13:73; p < 0:0001). Accuracy in the disagree con-
dition (M ¼ 0:523, SD ¼ 0:18) was substantially lower than
accuracy in the agree condition (M ¼ 0:82, SD ¼ 0:10).

This led us to an interesting question. We knew that
longer words created a bias for font size perception, as
described in Section 5.1, but we did not know why. Was
this bias the result of longer words taking up more space,
and therefore a function of width, or were participants
actually making a numerosity judgement about the let-
ters? We hypothesized that the main factor in this
effect was width rather than length, thinking that
words—especially real ones—are read more or less as a
whole, rather than letter by letter [25]. To test this hypoth-
esis, we ran two additional experiments to isolate the
effects of width and length.

5.3.1 Experiment WIDTH1: Bias Present When Width

Varies But Not Length

In our first of these experiments, we wanted to see whether
word width biased font size perception even when the num-
ber of characters and character height were held constant.
Varying width but not length put a tight constraint upon
the words we were able to use; differences between charac-
ter widths are small, and so words that differ substantially
in one factor but not the other are rare. For our stimuli,
we chose a collection of pairs of words that were each 8
characters long, but differed in raw width by 10 pixels. We
defined “raw width” to be a word’s width computed at a
font size of 20 px, so that we could have a measure of
width differences that was separate from our font size
factor. We also made sure that each pair of words shared
the same character height.

Our two factors for this experiment were width agree-
ment and font size difference. For each stimulus, one of the
target words had a font size of 20 px, while the other was
either 21, 22, 23, or 24 px. For the width agreement factor,
the larger of the two words either had a raw width that was
10 pixels greater than the smaller word (“agree”) or 10 pix-
els less than the smaller word (“disagree”). Four font size
differences combined with two levels of width agreement
gave us 8 conditions, each of which had a “correct” answer.

We tested 20 participants, each of whom saw 56 stimuli (6
per each of the 8 conditions, as well as 6 engagement tests).
After calculating the font size difference andwidth agreement

of each stimulus, we ran a two-way ANOVA to test for the
effects of the two factors on participant accuracy. We saw
main effects for both width agreement (Fð1; 133Þ ¼ 11:33,
p ¼ 0:001) and font size difference (Fð3; 133Þ ¼ 6:77, p ¼
0:0003) indicating a drop off in accuracy for width disagree-
ment at close font sizes (see Fig. 9). While a post hoc Tukey’s
HSD test only showed the smallest size difference condition
to be statistically distinguishable, this may have been due to
ceiling effects, given the very high accuracy across all other
conditions.

5.3.2 Experiment WISTH2: Bias Not Present When

Length Varies But Not Width

In the second of these experiments, we wanted to see
whether the number of letters in a word had any effect on
font size perception outside of the correlated factor of width
difference. For our stimuli, we chose pairs of words that
had the same raw width (described in Section 5.3.1) but dif-
fered by 3 letters in length. Of the words we had available
from which to choose, this was the largest length difference
that provided us with enough pairs. Each pair of words
shared the same character height, as well.

Our two factors for this experiment were length agree-
ment and font size difference. Once again, one of the two
target words in each stimulus had a font size of 20 px, while
the other was either 21, 22, 23, or 24 px. For the length agree-
ment factor, the larger of the two words had either 3 more
characters than the smaller word (“agree”) or 3 fewer char-
acters than the smaller word (“disagree”). Four font size dif-
ferences combined with two levels of length agreement
gave us 8 conditions, each of which had a “correct” answer.

We tested 19 participants, each of whom again saw 56
stimuli. After computing the font size difference and
length agreement of each stimulus, we ran a two-way
ANOVA to test for the effects of these factors on partici-
pant accuracy. This time, we saw no main effects for either
font size difference (Fð3; 126Þ ¼ 1:47, p ¼ 0:23) or length
agreement (Fð1; 126Þ ¼ 0:00, p ¼ 1:00). Accuracy was quite
high across all conditions (see Fig. 10). This seems to indi-
cate that any bias created by number of letters alone is not
strong enough to register without also varying the stronger
factor of word width.

5.3.3 Discussion

The restriction of varying only one of width and length
meant that we were not able to test very large differences in
either factor. As such, we did not expect to see a vary large
effect size for either experiment. However, from these

Fig. 9. This table shows the average participant accuracy for each com-
bination of experimental factors for experiment WIDTH1 (Section 5.3.1).
In this experiment, target words had a difference of 10 pixels in raw width
(i.e., their width at the same font size). In the “agree” condition, this width
difference was in the same direction as the difference in font size, while
it was in the opposite direction for the “disagree” condition. A two-way
ANOVA showed significant main effects for both width agreement and
font size difference. Only the lowest size difference was statistically dis-
tinguishable in post hoc tests, perhaps due to ceiling effects given the
very high overall accuracy.

Fig. 10. This table shows the average participant accuracy for each com-
bination of experimental factors for experiment WIDTH2 (Section 5.3.2).
In this experiment, target words had a difference of 3 characters in their
length (going with or against the direction of the difference in font size in
the “agree” and “disagree” conditions, respectively). A two-way ANOVA
showed no significant main effects for either factor, and accuracy was
very high across the board.
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results, we feel we can conclude that width is the more
important factor to consider when worrying about bias.
Length may matter in some extreme cases, but we stretched
the degree to which length can vary without width to the
limits of the English language, and still saw no effect. Practi-
cally, therefore, width seems the more relevant concern.

6 DEBIASING WITH RECTANGLES

In Section 5, we show that there are multiple ways in which
a word’s shape can bias interpretation of its font size.
Depending on the task a designer intends a user to under-
take, the effect of this bias may not be large enough to war-
rant much intervention—a possibility we discuss further in
Section 8. However, for tasks precise enough to be con-
cerned by these effects, the next question is what we can do
as designers to mitigate this bias.

One potential method for this debiasing effort was
inspired by the work of Correll et al. debiasing area discrep-
ancies in tagged text [26]. In this work, the authors deter-
mined that users suffered from an area bias when making
numerosity judgements of words tagged with colored back-
grounds. Specifically, when the number of words disagreed
with the area of the colored backgrounds, accuracy dropped
dramatically. However, they were able to counteract this
bias by adjusting the area of the backgrounds for underrep-
resented words.

We suspected that such a technique could be useful for
the biases we observed in font size encodings. By enclosing
individual words in filled bounding boxes, we can create a
redundant encoding for font size that may alleviate the
issue of diverse word shapes. These bounding boxes would
also give us a glyph whose proportions we can adjust with-
out fearing any change in legibility.

As such, we decided upon the following potential
debiasing technique: We would surround each word with a
padded bounding box. These boxes would contain the full
height of any potential character, going from the ascender
line to the descender line (see Fig. 4). The width of each box
would be adjusted such that they all shared the same raw
width—which is to say, they would be equal in width if
they all contained words of the same font size. With such
padding, the difference in rectangle width and height
would always agree with the font size difference for any
two words, creating a more reliable and readable indication

than the word alone. We ran an experiment to test whether
this strategy would help increase user accuracy in cases of
factor disagreement.

6.1 Experiment BOX1: Can Debias Encoding
with Rectangular Highlights

To test our debiasing technique, we ran an experiment with
a similar design to that described in experiment LEN4
(described in Section 5.1.2). The factors for our stimuli were
font size difference (which varied in increments of 5, 10, 15,
and 20 percent from a base font of 20 px) and word length
(which alternated between 5 and 8 characters for each
word). For this experiment, we also ensured that whenever
the two target words were the same length, they also had
the same raw width, and when they were not the same
length, they had a difference in raw width of 20 pixels.
These factor levels created 16 conditions, each of which had
a “correct” answer.

Rather than showing participants a pure word cloud, we
placed padded bounding boxes around each word (see
Fig. 11). These bounding boxes were padded on either side
such that the rectangle for each word had the same raw
width before any differences in font size had been applied.
Participants were instructed in the tutorial that the rectan-
gles containing the words were sized proportionally to the
words’ font sizes.

We tested 20 participants, each of whom saw 102 stimuli
(6 for each of the 16 conditions, plus an additional 6 engage-
ment checks). After computing the length/width agreement
and font size difference of each stimuli, we ran a two-way
ANOVA to test for the effects of these factors on participant
accuracy. While we found a significant main effect for font
size difference as before (Fð3; 209Þ ¼ 10:88, p < 0:001), we
saw no effect of length/width agreement (Fð2; 209Þ ¼ 0:52,
p ¼ 0:60). Even in the typical worst case—conditions with
factor disagreement and the smallest difference in font
size—participants scored over 90 percent accuracy (see
Fig. 12). To this degree, it seems that the padded bounding
boxes were successful at mitigating the bias introduced by
length/width disagreement.

This technique of debiasing font size encodings is pri-
marily a proof-of-concept. Aesthetically, word clouds like
the one in Fig. 11 are inferior to more standard layouts, and
aesthetics can be an important factor to an encoding’s utility
[27]. It may be possible to create more aesthetic approaches,
perhaps using other word features like font weight or track-
ing. At any rate, this shows that the effects of word shape
on font size perception are possible to correct for.

7 ALTERNATE TASK

A possible critique of this work is that our experimental task
(pick the bigger of two highlighted words) does not neces-
sarily reflect how font size encodings are used in the wild.
Our reason for using this task was that it acts as a “visual
primitive” for broader, more general tasks (see Section 3). It
is not our intention to say that people routinely have to per-
form the act of comparing two words within a word cloud,
but rather that the more high-level, interpretation-based
tasks that people do perform rely upon this low-level per-
ceptual ability.

Fig. 11. By containing each word in a color-filled bounding box and pad-
ding the sides of each bounding box such that their widths were propor-
tional to their font sizes, we were able to eliminate the effect of width
disagreement.
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Nonetheless, we wanted to confirm that the bias that
we saw within the compare-two-words task was not spe-
cific to this precise experimental setup. In a further set of
experiments, we looked for the same bias using a differ-
ent task: finding the single biggest word within a cloud.
While we believe that this task relies upon the same per-
ceptual abilities as the comparison task, it is in some
ways closer to how word clouds are used in practice.
Picking out the biggest word (or words) from a visualiza-
tion that uses font size to encode values is similar to the
higher level task of asking what the data encoded by the
visualization is “about.”

To give us control over the gap in font size between tar-
get words similar to what we had in our previous experi-
ments, we introduced a concept called near misses. Near
misses are words that are almost as large as the biggest font
size word, but not quite (see Fig. 13). Explicitly controlling
the near misses in each stimulus allowed us to evaluate
multiple font size differences between the biggest word and
the next biggest. It also gave us a new factor: the number of
near misses.

Our general hypotheses for the pick-the-biggest task
were that participant accuracy would be worse in instan-
ces of factor disagreement (as in our previous experi-
ments), and that this effect would be more pronounced
in stimuli that contained more near misses to distract the
participant.

7.1 Experiment BIG1: Bias Still Present in
“Pick the Biggest” Task

In our first experiment making use of the pick-the-biggest
task, we sought to examine potential bias due to word
length agreement or disagreement. We created a set of
stimuli of word clouds made up of pseudowords (see
Section 4.3). As before, stimuli contained 40 distractor
words, in this case limited to font sizes below 40 px. Stimuli
then contained either 1 or 4 near miss words which were
given a font size of 40 px. Finally, each stimulus contained a
target word (the “correct” choice) with a font size defined
by a percentage increment above that of the near misses
(either 5, 10, 15, or 20 percent bigger).

The factors for this experiment were font size difference
(5, 10, 15, or 20 percent), target word length (5 or 8 letters),
near miss word length (5 or 8 letters), and number of near
misses (1 or 4). Each factor was varied within participants.
The full combination of these factor levels resulted in 32
conditions. We tested 19 participants, once again recruited
through Amazon Mechanical Turk, each of whom saw 134
stimuli (4 per each of the 32 conditions, plus an additional 6
engagement tests with a font size difference of 50 percent).
After calculating font size difference and word length agree-
ment for each stimulus, we ran a two-way ANOVA to test
for the effect of the three metrics (including number of near
misses). We saw main effects for all three factors: font size
difference (Fð3; 414Þ ¼ 5:82, p ¼ 0:0007), length agreement
(Fð2; 414Þ ¼ 10:10, p < 0:0001), and number of near misses
(Fð1; 414Þ ¼ 33:66, p < 0:0001), indicating lower accuracy in
instances of word length disagreement, more near misses,
and closer font sizes (see Fig. 14).

Our hypothesis that we would still see a biasing effect of
length disagreement using a different task was confirmed.
Interestingly, accuracies seemed to drop off even more
when participants were performing the pick-the-biggest
task than when they were performing the pairwise compari-
son task (see Fig. 14). However, participants still achieved

Fig. 12. This table shows the average participant accuracy for each com-
bination of experimental factors for experiment BOX1 (Section 6.1).
In this experiment, words were given padded bounding boxes (as in
Fig. 11) in an attempt to mitigate the bias created by disagreement in
word width. While a two-way ANOVA showed there to be a significant
main effect of size difference on accuracy, no main effect was seen on
word width agreement—indicating that padded bounding boxes may be
a viable way of debiasing font size perception.

Fig. 13. For experiments BIG1 (Section 7.1) and BIG2 (Section 7.2), par-
ticipants were presented with word clouds of pseudowords and asked to
pick the one with the biggest font size. In this example, “zoav” is the cor-
rect answer, with four near misses that are of longer length.

Fig. 14. This table shows the average participant accuracy for each
combination of experimental factors for experiment BIG1 (Section
7.1). In this experiment, participants were asked to select the word
with the largest font size. They were presented with word clouds con-
taining a single word bigger than the rest (the “target” word) along with
either 1 or 4 “near misses.” A two-way ANOVA showed there to be a
significant main effect for both the font size difference between the tar-
get and the near misses, for word length agreement, and for the num-
ber of near misses.
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greater than 50 percent accuracy in each condition, perform-
ing better than chance.

7.2 Experiment BIG2: Wider Variety of Sizes in
“Pick the Biggest” Task

For a second experiment using the pick-the-biggest task, we
were interested in whether the magnitude of the word length
agreement or disagreement was relevant to the bias cre-
ated—that is, would instances of greater disagreement hurt
accuracy more than instances of small disagreement. We
created a design that was similar to that described in Section
7.1, but with different levels for the word length disagree-
ment factor. Rather than only considering words of 5 or 8
characters, we considered word length differences of 1, 3,
and 5 characters in both the “agree” and “disagree” direc-
tions, for a total of 6 levels for this factor. We hypothesized
that instances of large disagreement (e.g., 5 characters)
would show lower accuracy than instances of small dis-
agreement (e.g., 1 character).

We tested 19 participants on Amazon Mechanical Turk,
each of whom saw 150 stimuli (3 per each of the 48 combina-
tions of factors with an additional 6 engagement checks).
We ran a two-way ANOVA to test for the effects of the three
metrics, and again saw main effects for all three: font size
difference (Fð3; 846Þ ¼ 3:02, p ¼ 0:03), length difference
(Fð5; 846Þ ¼ 8:00, p < 0:0001), and number of near misses
(Fð1; 846Þ ¼ 7:00, p < 0:008)—each in the same direction as
seen previously. We also noted, as expected, that accuracies
were lowest in instances of largest disagreement and high-
est in instances of largest agreement (see Fig. 15).

7.3 Discussion

The main takeaway from these two additional experiments
is that the biasing effect of factor disagreement is not iso-
lated specifically to the task of pairwise comparison, but can
also be seen in a task that specifically tries to draw the user’s
attention to the most “important” word in the visualization.
The detrimental effect of more “near misses” seems to

perhaps indicate that while people are generally able to per-
form pairwise comparisons, needing to perform multiple of
these can cause them to miss smaller words. However, per-
formance is still better than chance in all but the most patho-
logical cases.

8 FULL DISCUSSION

Results from other experiments not described above are laid
out in the supplemental materials, available online. In those
experiments, we looked for a number of extra details and
effects. We compared performance at different base font
sizes. We tested to see if the results were the same with a
sans serif font (which they were). We looked for a size dif-
ference ceiling past which participant accuracy maxed out
(which proved to be between 20-25 percent size difference).
Consistent across each experiment were the same things we
saw in each of the experiments described in Sections 5, 6,
and 7: decreased performance with factor disagreement at
close size differences. It is worth noting that this effect is not
simply the result of participants focusing on area rather than
font size. Consider examples from our length disagreement
experiments. While we observed decreased accuracy when
a word with a 1-pixel-larger font size was significantly
shorter than the other target, increasing the font size differ-
ence by a mere pixel resulted in very high accuracy—even
though the difference in area disagreement created by this
change in font size would be minimal.

Clearly, perceptions of font size can be biased by these
factors. The relevant question for a designer is how much
this bias will affect their end users, and whether it is worth
designing around it. The effects that we saw occurred at
very close differences in font size, and even then partici-
pants performed better than chance. It may be that our
experimental setup artificially enhanced performance past
what we would see in the wild—perhaps by having users
focus in on two individual words out of many. Nonetheless,
the consistently high accuracy that we saw across so many
trials and conditions was remarkable. Despite the fact that

Fig. 15. This graph shows the average participant accuracy for combinations of experimental factors in experiment BIG2 (Section 7.2). In this experi-
ment, participants were tasked with picking the word with the largest font size as in Section 7.1. We tested a wider variety of length differences, and
saw that performance was generally lowest in cases of large disagreement and highest in cases of large agreement. These values are averaged
across two levels of the “number of near misses” factor. Error bars represent a 95 percent confidence interval.
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font size encodings are rarely used for tasks requiring pixel-
level accuracy, our findings seem to suggest that they may
be more suitable for such tasks than previously thought.
Given the particular utility of the font size encoding for tex-
tual data, expanding its potential uses could have signifi-
cant impact. An important future direction of this work,
therefore, will be to continue testing the limits of this per-
ception in real-world applications.

While thorough investigation of these phenomena in
more realistic contexts will be important for applying this
work, it is also important to understand the psychophysi-
cal mechanism(s) responsible for the observed effects.
Perceptual-level study of why this bias exists could help
us predict whether effects might be better or worse in
other viewing conditions, visualization contexts, or using
different kinds of data. It may be useful for such future
work to take the form of in-person studies for more pre-
cise measurement and better data gathering. This could
also help validate our crowdsourced results in a more
controlled environment.

Our debiasing attempts are a proof-of-concept, and show
that it is possible to correct for the effects of factor disagree-
ment in the event that a designer expects careful reading
and comparison of their encodings. We believe there are
more aesthetic ways of making these corrections, and are
interested in exploring them further. Font weight, for
instance, may interact with font size in ways that we could
exploit in our encodings. Possible candidates for other
methods include typeface modifications such as kerning,
widths of individual letter glyphs, or even exploring the use
of monospaced typeface (where all the characters have the
same width causing words that have the same length to be
the same width as well). Ultimately, whether or not debias-
ing is even necessary depends on how the encoding will be
used in practice.

While we looked for biasing effects of a number of fea-
tures related to a word’s content—including length, width,
character height, and font (see the supplemental materi-
als, available online)—there are more features that could
be examined. These include color, font weight, and a
word’s semantic weight or meaning. Also, while we
believe that the pairwise comparison and pick-the-biggest
tasks allow us to get down to the perceptual primitives of
higher level tasks, we are interested in testing a wider
variety of tasks to better understand font size encodings
in real world contexts.

9 CONCLUSION

We have explored the effects of different word shapes on
the perception of data encoded through font size. Across
multiple experiments, we have shown that the factors of
word length, character height, and word width can all have
a negative impact on one’s ability to judge comparative font
sizes, particularly when they differ in the opposite direction
from the font sizes being compared (“disagreement”). These
biases are consistent, but surprisingly small in their effects,
possibly indicating that such encodings are better suited to
higher accuracy tasks than previously expected. We have
shown in a proof-of-concept design that correcting for them
is possible by adjusting the visual encoding.
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